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PREFACE

The articles contained herein are the outgrowth of a compu-
ter workshop organized by Dr. John W. Robson* for the Commission
on College Physics in 1968. He succeeded in forming interested
individuals into a Computer Working Group which met several times
during the year; their contributions constitute this volume.

Almost every contributor presented the Editor with a wealth
of material and those segments were selected for inclusion which
seeffied to the latter's judgment to fit most harmoniously together.
This was done with considerable anguish and soul-searching; one
result of this synthesis is that a given contribution does not
necessarily represent the author's best or most unique work, but,
in most cases, only the tip of the iceberg. In consequence, the
Editor has thumpingly urged the authors of the lost masterpieces
to make them available to the general public through the Computer
Library for Instruction in Physics (see the American Journal of
Physics 35, 273 (1967)).

In using the computer in physics education, as distinct from
research, we are not only interested in ways of solving problems,
but in how the computer can add a new dimension to the nature and
content of the curriculum through its influence on the topics se-
lected and their mode of presentation. In order to remain relevant
to future needs, basic undergraduate courses must be appropriate-
ly modified to reflect the new points of view associated with com-
puter applications, numerical analysis must be integrated into
course work, and students should be given programming instruction
at an early stage in their education.

The use to which we put the computer depends on the available
facilities. From a pedagogical standpoint these are of three
types--interactive, semi-interactive and noninteractive. Large,
expensive installations which process programs in batches are non-
interactive. Smaller and cheaper machines may allow a student to
receive his output within a few minutes, alter his program and
resubmit it, if necessary. These are semi-interactive in that re-
ceipt of output is immediate, but errors or program alterations
necessitate terminating the program. The future widespread use of
the computer in the physics curriculum will result from the avail-
ability of interactive terminals, where the student can receive
output immediately, correct errors and input new instructions or
data without terminating his connection with the computer. Hence,
the emphasis in this volume has been on interactive and semi-in-
teractive facilities.

The computer may be used in the classroom in any of four ways:

*Presently, Dr. Robson is with the Department of Physics at
the University of Arizona, Tucson.
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as an administrator, tutor, simulator or calculator. In the first
mode it may be used simply to administer and grade exams and per-
form other onerous clerical chores. In the second mode it may, in
addition, tutor the student; i.e., correct his errors by hint,
precept or example and so lead him along various paths which are
determined by his previous answers and designed to aid him to over-
come his deficiencies.

The computer can simulate physical reality either as a "black
box" or as a loaded roulette wheel. The "black box" may be a pro-
gram representing a physical system into which the student enters
the values of certain physical quantities and then observes the
output from the program in place of an actual experiment. On a
time-shared teletype the student can easily "fiddle with the knobs,"

i.e., change his inputs and observe the results. In the roulette
wheel, or Monte Carlo, method the computer generates random numbers
which can be used to simulate phenomena in which chance in a factor
For example, one could simulate a baseball game using the batting
averages of the players. A player batting .325 would be allowed a
hit each time the three-digit random number representing his time
at bat was between 000 and 324 and called "out" if it was between
325 and 999. Such methods can be applied to problems of gaseous
diffusion, radioactive decay, scattering, etc.

However, it is as a calculator and solver of problems that the
computer should have its greatest impact on physics education. And
rather than have students use programs they do not understand, it
would be preferable to integrate the computer into physics at an
early stage. The major problem is the lack of textual materials
and programs, and the need for wider dissemination of those which
do exist. It is to serve this need that this volume was conceived,
and for this reason, also, programs are presented in FORTRAN or
BASIC, the two most popular languages in use today.

Since the individual authors generally performed their work
prior to the organization of the Computer Working Group, some dup-
lication was inevitable, and, in the case of the harmonic oscilla-
tor--probably the world's most "programmable" elementary problem--
was considered beneficial. Thus, we have presented the work of
Vierling which primarily illustrates the application of an advanced
fourth-order Runge-Kutta method to the theoretical problem, as well
as that of Grimsrud, designed for use in connection with an ele-
mentary pendulum experiment.

The volume opens with "Data Reduction" by Smith, which is in
the nature of a prerequisite to computer-oriented physics, since
it deals with the use of the computer to reduce data to a Gaussian
distribution and also describes an auxiliary program which may be
used to interpret "free-style" input, in which the students' input
to the program is freed from the usual tedious and confusing re-
strictions on format. Following Vierling and Grimsrud is Winder's
article, which describes relativistic two-body collisions, Grimsrud
having already presented the nonrelativistic case. This leads,
quite naturally, to Mikkelson's simulation of relativistic colli-
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sions in a bubble chamber. The next articles, by Harbron & Miller
and Kinsey & Kenyon, further illustrate the use of the computer
as a simulator; the latter illustrating, too, the Monte Carlo ap-
proach.

Although we have generally elected to avoid the tutorial mode
in this monograph, Jalbert's treatment of vacuum and low-velocity
ballistics does provide an example of a conversational approach.
Finally, Blum's article attempts to demonstrate how the computer
can be employed in the construction of an open-ended curriculum in
the sense that without much broadening of the conceptual base, as
given by Jalbert, the student can be enabled to treat problems of
greatly increased realism and relevance.

Although the Editor has required contributing authors to cast
their articles in the same format--Introduction, Student Manual,
and Teacher's Guide--a conscious attempt has been made to preserve
individual nuances of style and approach on the grounds that these
subtleties are themselves of interest to the practicing pedagogue.
However, the Editor takes no responsibility for the absolute rec-
titude of the contributing authors, witch the exception of the fi-
nal article in this anthology. Criticisms and suggestions are
welcomed, and remarks directed to particular authors will be for-
warded to them by the Editor. Individual articles may be ordered
separately through the Commission on College Physics, hence the
unusually verbose footnotes scattered through the text.

The Editor acknowledges the invaluable assistance of Mrs.
Faye von Limbach who prepared the typescript and the flow charts
and whose pithy observations often served as a useful stimulus.
Equally valuable were the tireless and enthusiastic efforts of Mr.
Lee A. Fowler who checked out many of the programs in this work.
Miss Kathryn E. Mervine also assisted in the editing, and the
project enjoyed the wholehearted support of Dr. John M. Fowler,
Director of the Commission on College Physics.

Members and friends of the Computer Working Group, in addi-
tion to those mentioned above, included Alfred Bork, University of
California, Irvine; David J. Cowan and Richard T. Mara, Gettysburg
College; S.A. Elder, U.S. Naval Academy; Russell K. Hobbie, Uni-
versity of Minnesota; Arthur Luehrmann, Dartmouth College; Anatole
Shapiro, Brown University; Harold Weinstock, Illinois Institute of
Technology; Ronald Winters, Denison University; Claude Kacser,
Leonard Rodberg and Sanders N. Wall, University of Maryland.

By and large the papers presented here do not claim to be
uniaue or particularly efficient. Hopefully, as a collection, they
are all of pedagogical interest as regards their presentation, the
problem treated and the experiences of their creators. We hope it
may serve as a guide and companion to those who wish to integrate
computers meaningfully into the context of their course work.

Ronald Blum
Commission on College Physics
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INTRODUCTION

This paper describes "GAUS," a program designed to compute
the mean and standard deviation of a collection of laboratory data,
as well as its goodness of fit to a Gaussian (normal) distribution
by means of the chi-squared test. Also described is a general
purpose auxiliary program, "FREE," which allows the students to
input data in a format-free mode. This greatly simplifies the use
of the computer in the classroom or laboratory, since data can be
written in a natural way and the students need not learn the in-
tricate and often tedious details of formatting, a fruitful source
of time-consuming errors.

Use of computer facilities to support undergraduate physics
laboratory instruction started at Coe College in the academic year
1965-66. A number of programs were writter to facilitate data re-
duction in an intermediate electricity and magnetism laboratory
and later "GAUS" was developed to help students in an introductory
laboratory gain insight into error of measurement. For the first
two years Coe made use of the IBM 7044 located at the University
of Iowa, twenty miles distant, via a courier service that provided
overnight turn-around. Initially, "GAUS" was used via optical
sense-mark cards developed by the Measurement Research Center in
Iowa City and requiring only a number two pencil for marking.

In the spring of 1967, under an NSF grant, Coe installed an
IBM 1130 with 8K core and 1/2 M disk; that summer existing programs
were modified for the 1130 and, with the help of high school stu-
dents, an extensive library of simple but generally useful subrou-
tines was developed to simplify further programming. This included
the first version of FREE and its associated supportive subroutines.
In the fall of 1967 and again in 1968, the author taught an intro-
ductory physics laboratory with calculus, in which computer use
played a major role. The programs were introduced to the students
as black boxes with little or no reference to their details of op-
eration. Emphasis was on least squares fits of experimental data
for linear acceleration, damped linear acceleration, and damped
simple harmonic motion. It has taken typical students three to
five weeks to really grasp the concept of least squares fits in
these situations. About 280 students have made use of "GAUS" and
found it a stimulating educational experience.

On the basis of three years' experience, the author has the
following recommendations to make:

1. Simplify input-output problems with a free style card
reader.

2. Develop a balanced diet of very simple programs that
students can write and/or modify, along with complica-
ted programs such as those used here.

2
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3. Dort expect to teach students very much FORTRAN while
they are simultaneously engaged in more traditional
laboratory experiments.

4. Be alert for students who have "personal relations"
problems with the computer. Some may not get assigned
work done because they feel an antipathy toward the
computer, others may lag behind due to their infatua-
tion with it and associated diversions. Both will need
sympathetic help!

The author wishes to acknowledge the assistance of Dr. Joseph
Kasper of Coe College and Dr. Ronald Blum of the Commission on
College Physics, who are responsible for much of the documentation
on the Gaussian distribution in the Student Manual which follows.



STUDENT MANUAL

Gaussian Distribution

Suppose that a measurement of a physical quantity is made,
where it is known that completely random deviations in the mea-
surement occur. Suppose further that the measurement is made
repeatedly, with all sources of systematic error eliminated.
The theory of probability demonstrates that if one plots the
frequency of occurrence of a given value of N as a function of
the value of N, and if one collects very large numbers of data,
then the graphical representation of the results will ideally be
in the form of a symmetrical curve known as a Gaussian curve, or
Gaussian distribution.

A typical Gaussian distribution, symmetric about the mean
value, N, is shown in Figure 1; the ordinate, P(N), is the rela-
tive probability (or "probability density") that any particular
measurement, N, will occur. While in reality the quantity mea-
sured may only take on certain discrete values, we shall find
that the continuous distribution is in fact a very useful tool
for the reduction of such data. The analytical formula for this
curve is

P(N) = (27(72)-1'1 exp[-(N - N)2 /2a2] (1)

where a2 is an independent parameter known as the variance of
N and its root, a, is called the standard deviation of N; exp(x)
= ex, another notation for the exponential function. The constant
multiplier (27(72)-1/2 is chosen such that the total area under the
curve between the limits - co N co is exactly unity. Thus, it
must follow that the area under the relative probability curve
between, say, N1 and N2 is the theoretical probability that a
measurement of N will fall between those two values. Further-
more, although there is some inconsistency in special cases where
N can never actually be negative, such as the count rate from a
radioactive source, this discrepancy is negligible if the area
under P(N) for negative N is only of the order of a few per-
cent, which is generally the case in our experiments.

Figure 1 shows two Gaussian curves with the same mean value
N = 9, but two different values of standard deviation, a. Al-
though both curves peak at N = N = 9, the curve with greater de-
viation is wider and, consequently, lower, since the area under
each curve must be unity. If one made but one measurement of the
physical quantity involved, and knew that the lower curve applied
then he would have little confidence in it, because on the grounds
of probability there would be a good chance that his one value was
consideraoly greater or smaller than the mean. However, if he
made one measurement and knew that the higher curve applied, his
confidence in the measurement would be much higher. This degree

4
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of confidence, or probable deviation from the mean, is stated in
various ways.

N

Figure 1. Gaussian distributions for N = 9, a = 1, and a = 3.

It
volving

a)

is a truly remarkable aspect of physical measurements in-

random errors that:

If a measurement of some physical quantity is made,
then, because of random fluctuations, it cannot be
taken as entirely reliable, even if there are no
instrumental or human errors present. However, the
known Gaussian distribution can be used to furnish
a meaningful estimate of the validity of the mea-
surement.

b) If sets of measurements are made, then they can be
compared with the ideal Gaussian curve, and devia-
tions in the actual distribution can be used to
check the validity of the results.

The standard deviation is a measure of the random variability of
individual measurements and hence of the confidence we may place in

them. It is often useful to think in terms of units of a about
the mean value, as shown in Figure 2. One can see that 68.3% of
the time an individual measurement taken at random will lie within

± a of the mean value, and 95.7% of the time within ± 2a of the

mean. Furthermore, in statistical theory, it is shown that the
mean value, while it may not be precisely the same as the true val-

ue, is the best estimate we can form of the true value; our results
are no less "scientific" for having taken account of the harsh re-

alities of random errors. It should also be clear from Figure 2

that when N is greater than 2a the fact that P(N) is also de-

fined for N < 0 will not cause any serious errors in estimating
probabilities in radioactive counting experiments from the Gaussian

distribution.

In general ITT and a are independent of each other; while
repeated reasurements of the period of a pendulum yield an average
value depending primarily on the physics of the pendulum, the stan-
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lard deviation of the measurements depends on the instrument and
technique of measurement. Howtiver, there is one important situa-
tion in which a very interesting relationship exists between N
and a. Whenever the measurement consists of counting independent
events occurring at random in successive intervals of time (or
space), then

a =

provided that N is moderately large (i.e., fi > 10).

For example, if one counted events with a Geiger tube over
a radioactive source and got 100 counts in some time interval,
such as ten seconds--hence, the standard deviation is a = 10
counts--then 68.3% of the time such a single measurement would
be within ± 10 counts of the average number of events due to
that particular source. That is, were we to estimate that 90 .s
N < 110, we would be right 68.3% of the time, or in 683 cases
out of 1,000 such measurements. The counting rate, R, would be

R = (100 ± 10) counts/ (10 sec)

with a "confidence level' of 68.3%. Were we willing to make a
looser prediction we could say R = (100 4. 20) counts/(10 sec),
with a confidence level of 95.7%.

b
co

b
CM

CZ

1Z b tD
b cm ;

1Z IA" 0::

Figure 2. Gaussian distributions in intervals of a.

The standard deviation also has the significance that if we
form the quantity (N - N)2 for each measurement of N and average
all such values, we obtain a2; hence, a may also be known as the
root-mean-square (rms) error of a variable. In counting-situations,
where a = , even one measurement of N affords a basis for
estimating a. However, in most situations one needs several mea-
surements to form an accurate estimate of the standard deviation,
according to the formula

a2

i=M
E (N1 - 1\7) 2

1=1
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where a total of M measurements of counts have been made; Ni is
the result of the i-th measurement. (It is actually most correct
to use M-1 in the denominator of the above expression; however,
this is a subtle theoretical point, and if !'l is large this is a
negligible effect.)

Now suppose we have collected some statistical data in the
form of repeated measurements. What can be made of them? They
can be compared with the expected Gaussian distribution
by making what is called a "chi-squared test". The quantity "chi-
squared" is computed by first preparing a histogram, or bar-graph,
showing the number of times (frequency) each measurement appeared,
as a function of the value of that measurement. Actually, each
histogram bar represents the number of times that measurements
lead to values falling in a certain interval;, e.g., one bar might
.represent how many times the count was between 90 and 100, the
next bar hew many times the count was between 100 and 110, etc.

When the completed histogram is at hand, it can be superim-
posed on the ideal or expected Gaussian distribution. There will
be a difference between the actual number of values, nj, observed
to fall in the j-th interval and the expected number of values, mi,
which the Gaussian distribution predicts will fall in the interval.
If, for each such interval, we compute the quantity (ni-m92/mi,
the sum over all J intervals is called the chi-squared statistic.

X2 L
iV ) 2

j=1.

The better the fit of distribution to data, the smaller is x2.

Probability theory tells us, for randomly distributed errors,
the probabilities of obtaining different values of x2 for differ-
ent values of Jr thus, one can check equipment or data for sys-
tematic or nonrandom errors by comparing the fit of the data to a
Gaussian curve. This information is commonly found in handbooks
in the form of tables which give the probability that x2 will
equal or exceed a certain numerical value. A sample of one line
from such a table is shown below:

Number of Intervals, j There is a probability of
0.99 0.90 0.50 0.10 0.01
that the calculated x2 is equal to or greater than

19 7.63 11.65 18.34 27.20 36.19

Thus, there is no unique answer to the question: When is a
fit good or bad? Instead, there is only a probabilistic answer.
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For example, as the excerpt from the table shows, if one measured
a count rate 19 times, plotted the distribution, plotted the ex-
pected Gaussian distribution, computed the value of x2, and found
x2 to be 10, the fit would be quite good. Specifically, there
would be more than a 90% chance that if the experiment were repeat-
ed the x2 would be greater than 10. On the other hand, if x2

turned out to be as high as 40, the fit would be considered very
bad and it would be unlikely that the distribution represents a
random selection from a set of Gaussian distributions.

In collecting data by measuring some quantity over and over,
peculiar instances sometimes arise. For example, if one were con-
sistently getting between 360 and 440 counts in one-minute inter-
vals from a radioactive source, and then in a given one-minute in-
terval got only 120 counts, one would be suspicious of that result.
According to the Gaussian curve, such an anomalous count is per-
fectly possible, for the Gaussian curve runs to infinity in both
directions from the mean. However, the probability of counts far
from the mean drops off more and more rapidly, the farther they
are from the mean. If one gets a count of 120 in a one-minute
interval, after consistently getting close to 400 each minute, the
thing that should really disturb us is not that this is totally
impossible, but that it is highly unlikely. In fact, it may seem
so unlikely that one would not want to include the result at all,
because it is not typical and would throw the mean value, off with
more weight than it deserves. In short, one is tempted to reject
that far-off value.

However, such subjective selectivity constitutes rather wan-
ton tampering with the scientific data. The prime requisite for
scientific honesty and objectivity is to let nature speak for her-
self, rather than to interpose the subjective bias of the experi-
menter. The solution to this problem is to adopt a specific cri-
terion, expressly stated, for the acceptability of data. One such
is "Chauvenet's Criterion" which states that an observation should
he discarded if the probability of its occurrence in the set of
observations is equal to or less than 1/(2K), where K is the
number of observations. The table below, assuming a Gaussian dis-
tribution, gives the maximum acceptable departure of any one
reading from the mean in units of a:

Number of Observations Maximum Departure Acceptable in Units of Standard Deviation

5 1.65

10 1.96
20 2.24
50 2.58
100 2.81

200 3.02

500 3.29

1000 3.48

Interested students may find it instructive to investigate
the Poisson distribution, which, when its mean is large, has the
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shape of the Gaussian distribution. The ideal Poisson distribution
has the peculiar property 'that, regardless of the magnitude of the
mean, the standard deviation is equl to the square root of the
mean of the distribution of values.

Instructions for Using the Computer Program "GAUS"

(1) Make repeated measurements of some physical quantity according
to whatever instructions you have been given for the particular
laboratory session. Take care to record the values obtained in the
order you obtain them.

(2) Punch into standard IBM data cards the values you obtained:
a. Separate different values by one or more blank positions

on the card.
b. Punch decimal points only for values with a decimal

fraction part.
c. Punch as many values on one card as you can, then con-

tinue on another card.
d. Do not split a given value between two cards.
e. Punch errors may be "erased" by overpunching each column

of the given value with an X, if column one is blank.
f. After your last value, enter "9999 in your dataFa-dr

no decimal point!

(3) Make up a data deck as follows using pre-punched cards if they
are supplied; otherwise, punch your own additional cards as needed.
The symbol "b" does not stand for the letter "B" punched on a data
card; it stands for a blank column with no hole punched in it.
Blank columns so designated must be present. The initial "//" must
be in columns one and two of the cards.

Here is how your deck of cards should look (top line represents top
card):

//bJOBbT
//bXEQbGAUS
A card with your name or identifying nuuber punched.
Your data cards--in order--as prepared under (2);

be sure you enter 9999 after your last value.
//b*bJOBbEND

(4) Submit your program; or run it yourself, if so instructed.

Output from GAUS

The first printed line is your identification card.

Values rejected according to the Chauvenet Criterion are noted
next; one or more values may be rejected at a time. After each
such occasion of rejection the remaining list is again checked to
see if any values in it should be rejected according to Chauvenet's
Criterion. Any value that is exactly zero is automatically reject-
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ed, as it is likely to be due to a keypunch or card reading error.
You may enter values arbitrarily close to zero, however; e.g.,
0.0001 is permitted.

Next, the values remaining are printed out in the original
order on the left, along with three additional columns: the "Run-
ning Average," "Running Sigma," and "Running Sigma of Ave." The
"Running Average" is the average of the value to its left plus all
preceding values in the first column; the "Running Sigma" is'the
standard deviation of those values; "Running Sigma of Ave." is an
estimate of how confident you can be in the value of the "Running
Average" value just to its left. It is, in effect, a prediction
of the standard deviation you might expect to get upon making a
list of average values obtained in a manner exactly as the one to
its left was obtained. That is, if the average value, x, of a
collection of data, x, (statistics) is itself considered as a new
statistic, the theory of probability predicts that a collection of
average values derived from data samples of M different measure-
ments will have a standard deviation a related to the deviation
o of a single DiCasurement by

ay = ax /41

The last values in these "Running" lists apply to the full list
given, except for those values rejected.

The full list is next divided up into successive subsets to
illustrate the way in which the average and standard deviation of
successive subsets fluctuates about the average and standard de-
viation applicable to the full list. Compare these values to the
last entries under "Running Average" and "Running Sigma".

The list of subset averages is now considered as a new list
of values for which the average and standard deviation is computed.
The same is done for the list of the standard deviations of the
subsets, which may, in turn, be considered a statistic and assigned
an average, U, and a standard deviation, aux .

The first value under "Their Sigma," which represents the
standard deviation of the list of averages of subsets, should be
compared with the M-th entry under "Running Sigma of Ave." above,
where M = the number of values in each subset of values. These
two values should be within 10 to 20 percent of each other if your
list of values has a true Gaussian shape.

Your list of values is again printed out, but this time or-
dered according to value; also listed is the departure of each
value from the mean value, i.e., the last value in the list "Run-
ning Average."

Next, a histogram is printed out along with an indication of
the interval of values included in each histogram bar. This is
followed by a numerical comparison of the observed histogram with
the expected. "CHI2" heads the list of contributions to the chi-
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squared sum. "Lower" and "Upper" are bounds on the histogram bars
in terms of departures from the mean. If the data is distributed
according to a Gaussian distribution, then theory tells us that

the value of x2 for data selected at random will be less than
the number of histogram bars at least 50% of the time, the exact
figure depending upon the exact number of bars. Thus, as a rule-

of-thumb, if X2 is significantly larger than the number of his-

togram bars, we would have reason to question the validity of the
Gaussian distribution as applied to that particular set of data.
(Incidentally, regrouping the data to make more or less bars also
affects the value of x2 accordingly--you can't beat the system!)



TEACHER'S GUIDE

Approximately 280 students have used GAUS over the past three
and a half years. These have been students of high school age in
summer NSF science programs as well as students in our introductory
physics courses. The student response has been generally quite
good, with a significant number of students showing genuine enthu-
siasm.

A variety of measurement procedures have been used to generate
data for GAUS:

1. Repeated measurements of the period of a simple tor-
sional pendulum made by hanging a rod on magnetic
tape.

2. Repeated measurements of transit time for a car on
an air track.

3. Radioactive decay counts - -each student instructed to
set his counting equipment so as to get some assigned
average count rate, at least approximately, so the
class as a whole can check the prediction that stan-
dard deviations will go as the square root of the
mean values.

Class and/or laboratory discussion is directed to the useful-
ness of the standard deviation associated with measurement. In
particular this is related to the question of whether certain func-
tional relations describe the relationship between experimental
values to within a reasonable degree of accuracy. The utility of
the Gaussian distribution needs to be emphasized and illustrated
by actually making use of it in laboratory work.

In selecting an experimental procedure to generate data for
GAUS, the following considerations are important:

1. It should be possible to obtain about 100 indepen-
dent measurements/hour; GAUS can handle 200 readings
in its present form.

2. Repeated measurements should yield a significant
scatter of values over a continuous range--specific
values should rarely repeat. The histogram gener-
ated may look very strange if this condition is not
met.

3. Except as you desire it, there should be no trend
for the repeated measurements to lead to values
tending to steadily increase or decrease. Note:

12



extended use of a stop watch can lead to fatigue
with increased response time and variance--this
might be interesting to study.

4. Avoid a change in "observer" in the middle of a
set of measurements, except as you wish students
to study possible effects of such changes, if any.

It has been possible at Coe College to have students go dir-
ectly from the laboratory to keypunches and then to the IBM 1130
where they could run their data "open-shop". While this does help
develop interest, there was also good student response even when
we had delays due to courier service to and from Iowa City. With
the IBM 1130 we store the program in "Core Image Format," so that
execution starts within about five seconds and runs one to three
minutes for typical sets of data used. Students are given the op-
tion of having their decks run for them closed-shop style if time

or inclination rules against the "hands-on" operation.

The following pages contain what it is hoped are self-explan-
atory listings of GAUS and its associated subroutines; followed
by an Appendix explaining the use of the subroutine for free-style
input.
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// * MODIF68 05
// DUP
*DELETE GAUS
// FOR
*I005(CARD,1132 PRINTER)
*ONE WORD INTEGERS
C GAUS USES SUBROUTINES SUBSE, ORDE, COUNT, GEX, CHI, AND FREE
C GAUS COORDINATES THE USE OF SUBROUTINES ORDE, COUNT, GEX, AND
C CHI TO MAKE AN ANALYSIS OF AN UNORDERED SET OF VALUES HAVING,
C PRESUMABLY, A GAUSSIAN DISTRIBUTION. IT ACCEPTS THE K VALUES
C IN THE VECTOR X(I) AND GENERATES THE FOLLOWING
C AVE = THE AVERFE VALUE OF SET OF READINGS
C S = THE STANDARD DEVIATION OF THE SET OF READINGS
C INTV= THE NUMBER OF INTERVALS SET UP TO MAKE HISTOGRAM BARS

C QLX(I) = THE NUMBER OF VALUES IN VARIOUS HISTOGRAM BARS.
C X(I) = THE READ IN VALUES IN GAUS, BUT COUNT FREQUENCY IN CHI

C EX(I)= THE NUMBER OF VALUES EXPECTED IN THESE HISTOGRAM BARS.
C DX(I) = THE DIFFERENCE BETWEEN ACTUAL AND EXPECTED, 2 DIF. USES

C DX2(I)= THE SQURE OF DX(I)
C CHI2(I) = CONTRIBUTIONS TO THE CHI SQUARED CRITERION PARAMETER
C QLB(I)= THE LOWER BOUNDS OF THE HISTOGRAM BAR INTERVALS
C QUB(I)= THE UPPER BOUNDS TO THE HISTOGRAM BAR INTERVALS
C SX = THE SUM OF THE NUMBER OF VALUES IN THE HISTOGRAM BARS
C SEX= THE SUM OF THE EXPECTED NUMBER OF VALUES IN THE VARIOUS BARS
C SDX= THE SUM OF THE ABSOLUTE VALUES OF THE VALUES DX(I)

C SDX2 = THE SUM OF THE VALUES DX2(I)
C SCHI2= THE SUM OF THE VALUES CHI2(I), THE CHI SQUARED SUM
C
C BY PAUL A. SMITH, COE COLLEGE, CEDAR RAPIDS, IOWA
C PLEASE COMMUNICATE ANY DIFFICULTIES TO THE AUTHOR DIRECTLY
C

DIMENSION X(200),DX(200),QLX(18),EX(18),DX2(18),CHI2(18),QLB(18),
. QUB(17),LX(17),TITLE(40)

1 FORMAT(40A2)
2 FORMAT(1H1,40A2)
5 READ(2,1) (TITLE(I),I=1,40)
WRITE(3,2) (TITLE(I),I=1,40)
K = 200
RJT = 0.0
CALL FREE(X,K)

C TEST TO BE SURE A SET OF VALUES WAS ACTUALLY READ IN
IF(K) 15,5,15

15 QK = K
SX = 0.0
DO 20 I = 1,K

20 SX = SX + X(I)
AVE = SX/QK
SDX2 = 0.0
DO 40 I = 1,K
DX(I) = X(I) - AVE

40 SDX2 = SDX2 + DX(I)**2
S = SQRT(SDX2/QK)

C USE LEAST SQUARES FIT FUNCTION
C FUNCTION WHICH IS DEPENDENT ON

CHAUV = S*(SQRT(8.39+8.62*ALOG

REPRESENTATION OF CHAUVENET CRITERION
THE NUMBER OF VALUES INVOLVED
(QK)/2.30259)-2.08-0.111*ALOG(QK)/



12.30259)
J = 0
DO 50 I = 1,K

15

C REJECT ALL VALUES EXACTLY EQUAL TO ZERO AS THEY MAY BE KEYPUNCH OR READ

C ERRORS AND WOULD NOT LIKELY BE REJECTED BY CONSIDERATIONS FOLLOWING

C VALUES VERY CLOSE TO ZERO ARE PERMITTED, FOR EXAMPLE 0.0001

C NEGATIVE VALUES ARE PERMITTED
IF(ABS(X(10)-0.0000001) 42,41,41

C REJECT VALUES VERY FAR OUT ON TAILS OP DISTRIBUTION
41 IF(CHAUV-ABS(DX(I))) 42,42,48
42 IF(RJT) 43,43,45
43 WRITE(3,44)
44 FORMAT('0 SORRY, BUT THESE VALUES LOOK OUT OF PLACE AND SO ARE REJE

.CTEDI///11X,'VALUE'8X,'AVERAGE'6X,'DEVIATION PERMITTED DEV')

RJT = 1.0
45 WRITE(3,46) X(I),AVE,DX(I),CHAUV
46 FORMAT(' '4F15.4)

GO TO 50
48 J = J + 1

DX(J) = DX(I)
50 CONTINUE

C END OF EXTREME VALUE REJECTION LOOP
C TEST TO SEE IF ANY VALUES REJECTED

IF(K-J) 52,60,52
52 K = J

C IF VALUES WERE REJECTED RECOMPUTE THE RAW SET OF VALUES

DO 55 I = 1,K
55 X(I) = DX(I) + AVE

C SINGLE SPACE THE PRINTER
WRITE (3, 46)

C IF VALUES WERE REJECTED RE-CHECK REMAINING LIST FOR EXTREME VALUES

GO TO 15
C THE RAW SET OF VALUES HAS BEEN CLEANED AND WE HAVE AVERAGE AND STANDARD

C DEVIATION
C MAKE A STUDY OF RUNNING AVERAGE AND STANDARD DEVIATIONS AND

C THEN FOR SUBSETS OF THE FULL SET COMPUTE AVERAGE AND STANDARD DEVIATIONS

60 CALL SUBSE(X,K)
C PUT THE VALUES AND THEIR DEPARTURE FROM THE AVERAGE IN NUMERICAL ORDER

CALL ORDE(X,DX,K)
WRITE(3,62) (X(I), DX(I), I=1,J)

62 FORMAT(///.0 ORDERED VALUES DEV FROM AVE' / /(' '2F15.4))

C COUNT UP HOW MANY VALUES LANDED IN EACH OF CERTAIN HISTOGRAM BAR INTERVALS

CALL COUNT(K,DX,SP,INTV,LX,QLB,QUB,AVE)
DO 70 I = 1,INTV

70 QLX(I) = LX(I)
C COMPUTE THE EXPECTED GAUSSIAN DISTRIBUTION OF COUNTS FOR HISTOGRAM BARS

CALL GEX(INTV,K,EX,SP,S)
C COMPUTE THE CHI SQUARE VALUE FOR OBSERVED VERSUS EXPECTED DISTRIBUTION

CALL CHI(INTV,QLX,EX,DX,DX2,CHI2,QLB,QUB,SX,SEX,SDX,SDX2,SCHI2,
1AVE,S)

C PERMIT MULTIPLE SETS OF DATA
GO TO 5

C WILL CALL EXIT ON ENCOUNTERING A // * MONITOR COMMENT CARD

END
// DUP
*STORE WS UA GAUS
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SUBROUTINE SUBSE(X,K)
DIMENSION X(1)

C MAKE STUDY OF RUNNING AVERAGE AND STANDARD DEVIATION OF SET OF VALUES

C DO NOT MAKE STUDY ON A SET OF LESS THAN 9 VALUES
IF(K-9) 5,10,10

5 RETURN
10 WRITE(3,20) X(1),X(1)
20 FORMAT('O OUTPUT PROM SUBROUTINE SUBSET°P0'9X'VALUES',3(8X1RUNNING

1} /6x1 AS READ Ig18X,'AVERAGE'10X,'SIGMA',3X,'SIGMA OF AVE'/'0'2F1
.5.4)
SUM = X(1)
SUM2 = X(1)**2

C COMPUTE RUNNING AVERAGE AND STANDARD DEVIATION FOR SET OF VALUES
DO 1.00 I = 2,K
SUM = SUM + X(I)
SUM2 = SUM2 + X(I)**2
AVE = AVERAGE OF SET OF mugs INCLUDED UP TO THIS POINT

C SDS = STANDARD DEVIATION OF THE SET
C SDA = STANDARD DEVIATION OF THE AVERAGE

AVE = SUM/FLOAT(I)
SDS = SMT((SUM2-FLOAT(I)*AVE**2)/FLOAT(I-1))
SDA = SQRTUSUM2-FLOAT(I)*AVE**2)/FLOAT(I*(I-1)))
WRITE(3,30) X(I),AVE,SDS,SDA

30 FORMAT(' 4F15.4)
100 CONTINUE

WRITE(3,101) K
101 FORMAT(10 THERE WERE 'I3,' VALUES IN THE FULL CLEAN SET')

C PREPARE TO MAKE A STUDY OF SUBSETS OF THE FULL SET OF VALUES
C NOT ALL VALUES CAN BE USED IN STUDY OF SUBSETS, SEEK TO WASTE AS FEW

AS IS POSSIBLE
C COMPUTE APPROPRIATE SIZE OF SUBSETS TO WASTE LEAST NUMBER OF VALUES
C NGK = NUMBER OF GROUPS KEEP
C KQ = NUMBER OF VALUES WASTED IN BEST CHOICE CF NG TO PATE
C N = NUMBER OF VALUES TO BE GROUPED IS EQUAL TO NUMBER IN LIST
C NS = SQUARE ROOT OF NUMBER OF VALUES, ROUGH ESTIMATE OF NUMBER GROUPS
C NI = NUMBER OF VALUES EACH SIDE OF NS TO BE CONSIDERED
C NX = MAXIMUM VALUE TO BE CONSIDERED IN CONSIDERING NUMBER OF GROUPS
C NG = THE NUMBER OF GROUPS CURRENTLY BEING CONTEMPLATED

NGK = 0
KG = 1000
N = K
NS = SQRT(FLOAT(N))
NI = (FLOAT(N))**0.25
NX = NS + NI
DO 105 NG = NS,NX

C CHECK TO SEE HOW MANY VALUES WOULD BE WASTED WITH CURRENT NG
IF(IABS(N-(N/NG)*NG)-KQ) 104,104,105

C STORE CURRENT BETTER THAN ANY FORMER VALUE OF NG WITH ASSOCIATED KQ
104 NGK = NG

KQ = IABS(N-(N/NG)*NG)
105 CONTINUE

C NR = NUMBER OF READINGS PER GROUP
C NU = NUMBER OF VALUES USED
C SUM = SUM OF INDIVIDUAL VALUES IN SUBSET
C SUM2 = SUM OF SQUARES OF INDIVIDUAL VALUES IN SUBSET
C GSUM = GRAND SUM OF SUBSET AVERAGES
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C GSUM2 = GRAND SUM OF SUBSET AVERAGES SQUARED
C ZSUM = SUM OF STANDARD DEVIATIONS OF INDIVIDUAL SUBSETS

C ZSUM2 = SUM OF SQUARES OF STANDARD DEVIATIONS OF SUBSETS

C NG = NUMBER IN SUBSET GROUP
NG = NGK
NR = N/NG
WRITE(3,106) NG,NR

106 FORMAT(//'0 BREAK UP VALUES INTO'I3,' SUBSETS OF '13,1 VALUES EACH')

NU = NR*NG
C SIZE OF GROUP SUBSET COMPUTATION COMPLETED
C COMPUTE AVERAGE AND STANDARD DEVIATION FOR THE VARIOUS SUBSETS OF VALUES

SUM = 0
SUM2 = 0
GSUM = 0
GSUM2 = 0
ZSUM = 0
ZSUM2 = 0
NG = 0
WRITE(3,110)

110 FORMAT('0'5X,'SUBSET AVE'21X,'ITS SIGMA' /' ')

C MAKE STUDY OF SUBSETS
DO 200 I = 1,K
SUM = SUM + X(I)
SUM2 = SUM2 + X(I)**2
IF (I-NR* (I/NR) ) 200,120,200

C NOTE I(MOD NR) HERE
C COMPLEAT COMPUTATIONS FOR THE GIVEN SUBSET

120 AVE = SUM/FLOAT(NR)
SDS = SQRT((SUM2-FLOAT(NR)*AVE**2)/(NR-1))
GSUM = GSUM + AVE
ZSUM = ZSUM + SDS
GSUM2 = GSUM2 + AVE**2
ZSUM2 = ZSUM2 + SDS**2
WRITE(3,150) AVE,SDS

150 FORMAT(' F15.4,15X,F15.4)
NG=NG+1

C HAS FULL SET OF SUBSETS BEEN CONSIDERED
IF(I -NU) 180,210,180

C ZERO ACCUMULATORS FOR SUMS OF VALUES ASSOCIATED WITH SUBSETS

180 SUM = 0
SUM2 = 0

200 CONTINUE
210 WRITE(3,211)
211 FORMAT(///5X'AVE OF AYES THEIR SIGMA AVE OF SIGMAS THEIR SI

.GMA1/")
C COMPUTE GRAND AVERAGES AND STANDARD DEVIATIONS
C G MEANS GRAND, Z MEANS STANDARD DEVIATION IN FOLLOWING FOUR NAMES

GAVE = GSUM/FLOAT(NG)
ZAVE = ZSUM/FLOAT(NG)
GAVEZ = SQRT((GSUM2 -FLOAT (NG)*GAVE**2)/(NG -1))
ZAVEZ = SQRT((ZSUM2 -FLOAT (NG)*ZAVE**2)/(NG -1))
WRITE(3,30) GAVE,GAVEZ,ZAVE,ZAVEZ
RETURN
END



SUBROUTINE ORDEAX,Y,K)
C PUTS THE TWO COLUMN VECTORS X(I) AND Y(I) IN ORDER ACCORDING TO THE

C VALUES IN X(I). THE PAIR X (J) AND Y (J) ARE KEPT TOGETHER IN ORDERING.

C THE SMALLEST X(I) IS PUT IN X(1)

DIMENSION X(1),Y(1)
C CHECK EVERY ELEMENT

30 DO 50 J = 1,K
C NOTE LOWER AS INITIAL SMALLEST ELEMENT

L = J
C CHECK EACH ELEMENT HIGHER THAN THE FIRST

DO 40 I = J,K
C IF THE LOWER IS .LE. THE HIGHER ONE ALL O.K.

IF(X(L)-X(I)) 40,40,35
C IF HIGHER ELEMENT SMALLER THAN LOWER ONE, NOTE THIS

35 L = I
IS KEPT THE INDEX OF THE SMALLEST ELEMENT EXAMINED

40 CONTINUE
C ON EXIT FROM DO LOOP L IS INDEX OF SMALLEST ELEMENT

C TEMPORARILY STORE VALUES OF LOWEST ELEMENT STUDIED

TX = X(J)
TY = Y(J)

C TRANSFER SMALLEST ELEMENT TO LOWEST POSITION STUDIED

X(J) = X(L)
Y(J) = Y(L)

C PLACE TEMPORARY VALUE IN PLACE OF SMALLEST VALUE

X(L) = TX
50 Y(L) = TY

RETURN
END
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SUBROUTINE COUNT(L,DX,SP,K,LX,QLB,QUB,AVE)
C THIS SUBROUTINE ACCEPTS L VALUES DX(I). A HISTOGRAM ANALYSIS

C IS MADE BY SETTING UP K INTERVALS OF WIDTH SP WHICH SPAN THE

C SET OF VALUES INCLUDED IN DX(I), HAVING UPPER AND LOWER BOUNDS

C STORED IN QUBJI), AND QLB(I). THE NUMBER OF VALUES DX(I) WHICH ARE

C FOUND TO FALL IN THE VARIOUS INTERVALS ARE STORED IN LX(I).

C A HISTOGRAM OF LX(I) IS INCLUDED USING **************
C THE NUMBER OF HISTOGRAM BARS IS AN ODD NUMBER JUST LESS THAN THE

C SQUARE ROOT OF THE NUMBER OF VALUES IN THE LIST
INTEGER STAR, BLANK
DIMENSION DX(1),LX(1),QLB(1),QUB(1),ID(30)
BLANK = 16448
STAR = 23644
QL = L
K = SQRT(QL) 0.5
IF (K (X /2) *2) 4,2,4

2 K = K 1
4 IF(K 3) 6,6,8
6 K = 3
8 QK = K
DO 10 I = 1,K

10 LX(I) = 0
SP = 1.0001*(DX(L)DX(1))/QK
AM = DX(1) + (DX(L) DX(1))/2.0
D020 I= 1,K
QI = I K/2 1
DO 18 J = 1,L
QLB(I) = (QI.5) *SP + AM
QUB (I) = (QI+.5) *SP + AM
IF(DX(J)QLB(I)) 18,18,14

14 IF(DX(J)QUB(I)) 16,16,18
16 LX(I) = LX(I) + 1
18 CONTINUE
20 CONTINUE

DO 25 I = 1,30
25 ID(I) = I

WRITE(3,31)
31 FORMAT(///'0'4X,'LOWER BOUND'4X,'UPPER BOUND HISTOGRAM BARS'/")

D060 I= 1,K
LXU = LX(I)
QLB (I) = QLB (I) + AVE
QUB(I) = QUB(I) + AVE
IF(LXU 90) 37,37,36

35 FORMAT(' ',2F14.4,90A1)
36 LXU = 90
37 WRITE(3,35) QLB(I),QUB(I)

Imo' (LXU) 55,55,50
50 WRITE(3,100) (STAR,L = 1,LXU)
55 QLB(I) = QLB(I) AVE
60 QUB(I) = QUB(I) AVE
100 FORMAT('+',29X,90A1)

RETURN
END
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SUBROUTINE CHI(K,X,EX,DX,DX2,CHI2,QLB,QUB,SX,SEX,SDX,4X2,SCHI2,
1AVE,S)
CHI IS USED IN CONJUNCTION WITH SUBROUTINE GADS. SEE THE LATTER

C FOR THE SIGNIFICANCE OF THE VARIABLES IN CHI. SUBROUTINE CHI
C ACCEPTS K VALUES OP X(I) AND EX(I), NORMALIZES THE VALUES OF
C EX(I) SO THAT THE SUM OF THEIR VALUES IS EQUAL TO THE SUM OF THE
C VALUES OF X(I), THEN CALCULATES THE VALUES OF SEX,SDX,SDX2,SCHI2

DIMENSION X(1),DX(1),EX(1),DX2(1),CHI2(1),QLB(1),QUB(1)
SX = 0.0
SEX = 0.0
DO 10 I = 1K
SX = SX + X(I)

10 SEX = SEX + EX(I)
DO 15 I = 1,K

15 EX(I) = (SX/SEX)*EX(I)
SEX = 0.0
SDX = 0.0
SDX2 = 0.0
SCHI2 = 0.0
DO 30 I = 1,K
SEX = SEX + EX(I)
DX(I) = EX(I) X(I)
IF(ABS(DX(I))-1.0E-15) 25,26,26

25 DX(I) = 1.0E-15
26 SDX = SDX + ABS(DX(I))

DX2(I) = DX(I)**2
SDX2 = SDX2 + DX2(I)
IF(EX(I)-1.0E-15) 27,28,28

27 EX(I) = 1.0E-15
28 CHI2 (I) = DX2(I)/EX(I)
30 SCHI2 = SCHI2 + CHI2(I)

QK = K
WRITE(3,100) (X(I),EX(I),DX(I),DX2(K),CHI2(I),QLB(I),QUB(I),I=1,K)

100 FORMAT(////' NOW LETS LOOK AT THE EXPECTED HISTOGRAM' //'0 COUNT E
.XPECT DIF DIF2 CHI2 LOWER UPPER' / /(' 7F7.2))
WRITE(3,120) SX,SEX,SDX,SDX2,SCHI2

120 FORMAT('0'7F7.2)
WRITE(3,130)

130 FORMAT('O THE LAST LINE OF VALUES GIVES SUMS OF VALUES IN COLUMNS')
RETURN
END
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SUBROUTINE GEX(KIL,EXISP,S)
C THERE ARE L VALUES HAVING A GAUSSIAN DISTRIBUTION WHICH HAVE
C BEEN FOUND TO FALL IN K INTERVALS OF WIDTH SP. THE VALUE OF
C K IS AN ODD INTEGER. THE STANDARD DEVIATION OF THE L VALUES IS
C THE NUMBER S. THIS SUBROUTINE CALCULATES THE VALUES OF EX(I)
C WHICH ARE PROPORTIONAL TO THE NUMBER OF VALUES EXPECTED TO FALL IN
C EACH INTERVAL OF WIDTH SP. NOTE THAT THE SUM OF THE EX(I) IS NOT
C EQUAL TO THE VALUE OF L BECAUSE THE EXPECTED GAUSSIAN DISTRIBUTION
C EXTENDS BEYOND THE RANGE COVERED BY THE K INTERVALS OF WIDTH SP

DIMENSION EX(1)
QL = L
DO 50 I = 1,K
QI = I - K/2 - 1
IF(K-(K/2)*2) 15,14,15

14 QI = QI + 0.5
15 SUM= 0

DO 40 J = 1,10
QJ = J
QJ = QJ*0.1

40 SUM = SUM + EXP(-((QI-.5+QJ-0.05)*SP)**2/(2.*S**2))
50 EX(I) = (QL/S/2.5066)*SUM*(SP/10.0)

RETURN
END

Sample Data Deck for GAUS

// XEQ GAUS
DICK ROWE TORSION PENDULUM PART II
22.2 22.1 22.2 21.9 22.2 21.8 22.0 22.0 22.3 21.9 22.0 22.0 21.8 22.2
22.4 22.4 22.7 22.2 21.5 22.4 21.8 22.1 21.8 22.0 22.0 22.4 21.8 22.2
22.1 22.2 21.7 22.2 22.2 22.2 22.3 22.5 21.6 22.6 22.1 22.0 21.9 21.8
22.0 21.6 22.3 22.5 22.3 22.0 22.3 22.2 9999



APPENDIX

Format-Free Input

When one is working with students of little or no previous
experience in using a digital computer, one of the major problems
encountered is that of their properly entering data on punched
cards. This is true both in the case where the computer program
is written for the student by the instructor and the case where
students write their own programs for simple data analysis. Even
for experienced programmers, entering data on cards according to a
specified FORMAT can be a serious nuisance. The Coe College FREE
STYLE input programs are designed to remove this barrier to easy
use of the digital computer; it can easily make the difference
between success and total failure in introducing digital computing
into instructional activities.

The basic premise of the system is that a student should be
able to punch into data cards, in proper sequence, the numbers to
be entered into the computer with practically no further restric-
tions. In general, any recognizable number is legal. In particu-
lar:

1. Numbers may be placed anywhere on a card or cards
just so long as: a) one or more blanks separate
different numbers; b) all of each number is on
just one card; and c) numbers from two different
"batches" do not appear on the same card.

2. Numbers are read in "batches" of one or more val-
ues. Each "batch" corresponds to the execution
of a statement of the form CALL FREE(XINV). This
causes up to NV values to be read into the loca-
tions X(1), X(2), X(3), . . X(NV) . Successive
cards are searched for numbers until one of the
following happens: a) NV values have been read
in--RETURN to calling program; b) 9999 encounter-
ed on a data card--NV is set equal to the number
of values previously read in--RETURN to calling
program--"9999" thus means "end of batch" when NV
is set big; c) // found in columns one and two- -
monitor trap.

3. Numbers may contain: a) up to 8 digits; b) alge-
braic signs may be used freely--the "+" sign is
optional; c) a decimal point--optional for inte-
ger values; d) a properly positioned "E" in an
exponential constant, provided there is no blank
space before the "E" and it is followed by an ex-
plicit "+" or "-" sign (for example, 0.317E-8) .

22
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4. Illegal characters are treated as blanks, if col-

umn one of the card is blank. This permits the

following a) entries on data cards of the form

A = 5.6 so the student may remind himself of the

meaning of the number; b) erasure of keypunch
errors by overpunching all of the number in ques-

tion with X's (this greatly speeds up novice use

of an electric keypunch and permits ready use of

manual inexpensi e ones in laboratory situations);
c) insertion of pure comment cards and blank cards

in the data deck for identification and reminder

purposes.

5. Comment cards with a "C" in column one are not
examined for numerical values; instead they are
printed out on the printer with carriage control
according to the content of column two. This

permits batched data decks with pagination and
student name header printed at the top of his

printed output.

The card reading by these programs is slow but very useful

with limited amounts of data. Efforts will be made to write fas-

ter versions--both with only FORTRAN and also taking advantage of

the IDEAL subroutines available on the IBM 1130 which permit a

faster search and overlapped I/O.

The following pages contain listings of FREE and associated

programs from the FREE STYLE package, as well as a flow chart for

FREE, which is the fundamental subroutine. In the flow chart,

literals such as "+" within a diamond (decision symbol) indicate

a test as to whether the column under consideration contains that

symbol. The symbol "b" stands for a blank column.
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// * MODIF68 12
// DUP
*DELETE FREE
/1 FOR
*ONE WORD INTEGERS

SUBROUTINE FREE(X,NV)
DIMENSION X(1),NA(80),PT(10)

C
C FREE STYLE CARD READER
C
C CALL FREE (X,NV) WILL READ UP TO NV VALUES INTO X (1) . . . X(NV)
C THE FIRST ARGUMENT OF THE CALL STATEMENT MUST BE A SINGLY SUBSCRIPTED REAL
C VARIABLE
C THE SECOND ARGUMENT OF THE CALL STATEMENT MUST BE AN INTEGER VARIABLE
C PUNCH VALUES ANYWHERE ON CARD BUT SEPARATE THEM WITH ONE OR MORE BLANKS
C VALUES MAY HAVE UP TO EIGHT INTEGER DIGITS PUNCHED TO DESIGNATE THEM
C DECIMAL POINTS ARE HONORED WHERE PUNCHED BUT ARE OPTIONAL
C VALUES ARE READ OFF CARDS IN ORDER RUNNING FROM LEFT TO RIGHT ON
C SUCCESSIVE CARDS UNTIL NV VALUES FOUND OR 9999 FOUND
C YOU MAY PUT AS MANY OR AS FEW VALUES ON EACH CARD AS DESIRED
C FOUR NINES STANDING ALONE ON CARD SERVE AS SIGN OF END OF VALUES
C IF 9999 IS ENCOUNTERED NV IS SET TO THE NUMBER OF VALUES PREVIOUSLY READ
C TO ENTER THE VALUE 9999 INTO THE COMPUTER ENTER IT AS 9999.
C
C WITH NV = 4 CALL FREE(X,NV) WOULD READ 1 2 3 4 OFF NEXT CARD, LOSE 5 6 7
C 1 2 3 4 5 6 7
C WITH NV = 10 CALL FREE(X,NV) WOULD READ 1 2 3 4 5 OFF NEXT CARD AND SET
C NV = 5 BEFORE RETURN FROM THE CALL
C 1 2 3 4 5 9999 6 7 8 9
C
C LEGAL CHARACTERS ARE 0123456789.E+-
C THERE MUST BE NO BLANK BEFORE THE E AND THERE MUST BE A + OR - AFTER
C E TYPE NUMBERS ARE HONORED IN FOLLOWING FORMS 12.0E+2 4.5E-2
C
C
C
C
C
C CARDS HAVING COLUMN ONE BLANK WILL HAVE ALL ILLEGAL CHARACTERS REMOVED
C BEFORE THE NUMBERS ARE READ OFF IT
C DATA CARDS WITH ANY PUNCH IN COLUMN ONE EXCEPT C WILL BE READ WITHOUT ANY
C CHECKING FOR ILLEGAL CHARACTERS
C THANKS TO ERASURE FEATURE MISPUNCHED CHARACTERS MAY BE 'X-ED' OUT ON CARD
C THIS MAKES IT PRACTICAL TO USE MANUAL CARD PUNCHES IN THE LABORATORY

LEGAL VALUES 2 4 5 +23 -24 -23. -.02 +.03 12E+3 -4.5E-23 1E+.01 45632578
ILLEGAL VALUES 2.13.52.45.6 23.4E 3 23.8 E+35 9999 (EXCEPT AS END)
ILLEGAL VALUES 23E05 E+03 456328754 45.2547865 +36-25+47+89 0.00000005

C
C NOTE THAT COLUMN ONE MUST BE BLANK FOR ERASURE FEATURE TO OPERATE
C ERASURE OF ILLEGAL CHARACTERS PERMITS DATA CARDS AS THOSE FOLLOWING
C HERE CONSIDER COLUMN 7 TO BE COLUMN 1 OF A REAL DATA CARD
C A = 2.3 B = 5.6 C = 4.2 ON FIRST EXPERIMENT 9999
C FOLLOWING ARE THE TIMES 4 7 9 12 14 16 18 20 9999
C FOLLOWING ARF THE DISTANCES 5 6 7 9 10 13 45 9999
C DDATA BY NANCY PHYSICIST ON AUGUST TENTH (DON'T PUT DIGIT FOR DATE)
C THIS FEATURE WILL HELP NOVICES KEEP TRACK OF WHAT THE VALUES REPRESENT
C
C A 'C' IN COLUMN ONE OF A DATA CARD READ BY 'FREE' WILL BE PRINTED ON



1
25

C THE PRINTER BUT OTHERWISE WILL BE IGNORED
C THE FEATURE OF A 'C' IN COLUMN ONE PER HITS PRINT-OUT TO BE IDENTIFIED

C FOR LABORATORY DATA REDUCTION JOBS HAVING MANY SETS OF DATA FOR ONE RUN

C
C CARDS ARE READ AT BETWEEN 60 AND 120 CARDS PER MINUTE DEPENDING ON CONTENT

C
NCP = 1

C NCP = INCREMENT OF COLUMN COUNTER. SET NCP = 2 FOR ALTERNATE COIJJMNS
NVR = 1

C NVR = NUMBER OF VALUES READ IN
PT(1) = 1

C PT(I) = POWERS OF TEN = 10**(I-1)
rlom.:, 10 NC = 2,10
.pT(Nc) PT(NC-1)*10
NOPX = 1

C NOPX = NUMBER OF OPERATION IN MULTIPLICATION OF ENTRY VALUES
C NOPX = 1 MEANS

20 READ(2,32) NA
NANC = NA(1)
IF(NANC+15552)

C DATA CARD WITH
C 'C' CARDS HAVE
C USE 'Cl' TO GO

30
32

40
45

C
50

C
51

C
52

C
53

C
54

C
55

C
56

C
C

57
58
59

C

NO OPERATION NOPX = 2 MEANS MULTIPLY BY POWER OF TEN

40,30,40
'C' IN COLUMN ONE IS PRINTED ON PRINTER
CARRIAGE CONTROL ON COLUMN 2
TO TOP OF PAGE, 'CO' FOR DOUBLE SPACE, 'C ' FOR SINGLE

WRITE(3,32) NA(2),NA
FORMAT(81A1)
GO TO 20
TO CUT STORAGE DEMANDS PUT A GO TO 70 STATEMENT AT 40 AND CUT FOLLOWING
IF(NANC-16448) 70,45,70
DO 68 NC = 2,80
NANC = NA (NC)
IF(NANC-16448) 50,68,50
CHECK TO SEE IF CHARACTER IS A LETTER
IF(NANC+5824) 56,56,51
CHECK TO SEE IF CHARACTER IS AN INTEGER
IF(NANC) 68,52,52
CHECK TO SEE IF CHARACTER IS A '-'
IF(NANC-24640) 53,68,53
CHECK TO SEE IF THE CHARACTER IS A 1.1
IF(NANC-19264) 54,68,54
CHECK TO SEE IF THE CHARACTER IS AN IBM 026 '+'

IF(NANC-20544) 55,68,55
CHECK TO SEE IF THE CHARACTER IS AN IBM 029 '+'

IF(NANC-20032) 56,60,56
CHECK TO SEE IF THE CHARACTER IS AN 'E'
IF(NANC+15040) 61,57,61
THE 'E' TYPE NUMBERS MUST HAVE A '+' OR '-' FOLLOW THE 'E'
CHECK TO SEE IF THE 'E' IS FOLLOWED BY '-' OR '+' OR EITHER TYPE
IF(NA(NC+1)-20544) 58,68,58
IF(NA(NC+1)-20032) 59,68,59
IF(NA(NC+1)-24640) 61,68,61

60 NA(NC) = 20544
GO TO 68

61 NA(NC) = 16448
68 CONTINUE
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70 NC = 0
C NC = NUMBER OF COLUMN OF CARD BEING CONSIDERED

80 NC = NC + NCP
C LOOK FOR FIRST CHARACTER OF NEXT VALUE

IF(NC-80) 90,90,20
90 NANC = NA(NC)

IF(NANC-16448) 100,80,100
100 ND = 0

C ND = NUMBER OF DIGITS IN NUMBER CONSIDERED
NDD = 1

C NDD = NUMBER OF DECIMAL DIGITS OF NUMBER CONSIDERED
NDDF = 0

C NDDF = INCREMENT OF ND!) FOR COUNTING NUMBER OF DIGITS BEYOND 1.1
NVAL = 0

C NVAL = INTEGER VALUE OF UP TO FIRST FOUR DIGITS OF NUMBER
NVAL2 = 0

C NVAL2 = INTEGER VALUE OF DIGITS BEYOND FIRST FOUR DIGITS OF NUMBER
NC2 = 1

C NC2 = NUMBER OF COLUMNS BEYOND FOURTH DIGIT OF NUMBER
NC2 AND NDD ARE AUGMENTED BY ONE FOR USE IN PT(I)
NOPXL = NOPX
NOPX = 1

C NOPXL = VALUE OF NOPX LAST TIME X(I) HAD VALUE STORED IN IT
NSG = +1

C CHECK FOR ALGEBRAIC SIGN OF VALUE
IF(NANC-24640) 130,120,130

120 NSG = -NSG
GO TO 200

C CHECK FOR BOTH CODES FOR '+'
130 IF(NANC-20544) 190,200,190
190 IF(NANC-20032) 220,200,220
200 NC = NC + NCP

IF(NC-80) 202,202,340
202 NANC = NA(NC)

C CHECK FOR DECIMAL POINT
220 IF(N1NC-19264) 240,230,240
230 NDDF = 1

GO TO 200
C CHECK FOR 'E'

240 IF(NANC+15040) 260,320,260
C END OF A VALUE ON DATA CARDS INDICATED BY PRESENCE OF A BLANK
C CHECK FOR DELIMITER BLANK

260 IF(NANC-16448) 270,340,270
C NANC MUST REPRESENT AN INTEGER IF IT REACHES STATEMENT 270
C FIND THE INTEGER VALUE OF THE CHARACTER IN COLUMN NC
C THIS PROCEDURE SPECIFIC TO IBM 1130 CHARACTER CODE
C ANOTHERROUTINE HERE MAY BE SUBSTITUTED FOR ANOTHER CHARACTER CODE

270 I = (NANC+4032)/256
C COUNT NUMBER OF DIGITS AND DECIMAL DIGITS

ND = ND + 1
NDD = NDD + NDDF
IF(ND-5) 275,285,285

275 NVAL = NVAL*10 + I
GO TO 200

285 NVAL2 = NVAL2*10 + I
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NC2 = NC2 + I
GO TO 200

320 NOPX = 2
340 X(NVR) = ((NVAL*PT(NC2) + NVAL2)/PT(NDD))*NSG

C NVR = NUMBER OF VALUES READ IN OFF CARD
C IF THERE WAS AN 'E' DELIMITER ON LAST VALUE MULTIPLY BY POWER OF TEN
C FRaCTIONAL POWERS PERMITTED HERE
C 21.3E+0.5 IS A LEGAL DATA VALUE FOR 'FREE'

GO TO(360,350),NOPXL
350 X(NVR-1) = X(NVR-1)*10.0**X(NVR)

NVR = NVR -1
360 GO TO(410,480),NOPX
410 IF(NDDF) 440,430,440

C FOUR NINES IN A ROW WITHOUT DECIMAL POINT INDICATE END OF STRING OF VALUES
430 IF(NVAL-9999) 440,450,440

C READ ONLY UP TO 'NV' VALUES
440 IF(NVR-NV) 480,460,460

C DO NOT RETURN THE VALUE 9999
450 X(NVR) = 0

C CALL FREE WITH SECOND ARGUMENT A VARIABLE NEVER A CONSTANT
C NOTE THAT HERE THE SECOND ARGUMENT HAS ITS VALUE CHANGED
C NV ON RETURN IS THE NUMBER OF VALUES ACTUALLY READ IN BEFORE 9999

NV = NVR - 1
460 RETURN
480 NVR = NVR + 1

GO TO 80
END

// DUP
*STORE WS UA FREE
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(A Program to Input Parallel Column Vectors)

SUBROUTINE FREXY(X,Y,NV)
C READS UP TO NV VALUES OF X(I) AND Y(I) IN SEQUENCE END BY 9999
C SEE DOCUMENTATION ON FREE
C IN CALLING PROGRAM X MUST BE DIMENSIONED IN EXCESS OF 2*NV
C IF DIMENSION X(2*K),Y(K) YOU MAY EQUIVALENCE X(K+1) AND Y(1) TO SAVE CbRE

DIMENSION X(2),Y(1)
C THE DIMENSION STATEMENT MERELY DECLARES THESE TO BE SULSCRIPTED VARIABLES

NV = NV*2
CALL FREE (X, NV)
NV = NV/2
IM = NV - 1

C IN CASE ONLY ONE PAIR OF VALUES READ IN
Y(1) = X(2)
IF(IM) 500,500,20

C SHIFT EVEN NUMBERED LOCATIONS UP AND ODD NUMBERED LOCATIONS TO BOTTOM
20 DO 100 I = 1,IM

12 = 2*I
I2P = 12 + 1

C FOR EACH EVEN NUMBERED LOCATION SHIFT NEXT ODD ONE OUT TO TEMP FIRST
C THEN SHIFT ALL ORIGINAL EVEN LOCATIONS BELOW IT UP ONE LOCATION

TEMP = X(I2P)
DO 80 J = 1,I
K = I2P - J
X(K+1) = X(K)

80 CONTINUE
C PUT THE ODD LOCATION IN PLACE MADE AT BOTTOM OF EVEN LOCATION STRING

X(I+1) = TEMP
100 CONTINUE

C PUT ALL EVEN LOCATIONS INTO THE Y COLUMN VECTOR
DO 200 N = 1,NV
K = NV + N

200 Y(N) = X(K)
500 RETURN

END
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Subroutines That Complement Free
By Facilitating Reading In Unscripted Values

SUBROUTINE RD1(A)
DIMENSION X(1)
NV = 1
CALL FREE(XINV)
A = X(1)
RETURN
END

SUBROUTINE RD2 (A, B)
DIMENSION X(2)
NV = 2
CALL FREE(X,NV)
A = X(1)
B = X(2)
RETURN
END

SUBROUTINE RD3(A,B,C)
DIMENSION X(3)
NV = 3
CALL FREE(X,NN9

SUBROUTINE IRD1 (NA)
DIMENSION X(1)
NV = 1
CALL FREE (X, NV)
NA = X(1) +0.0001
RETURN
END

SUBROUTINE IRD2(NA,NB)
DIMENSION X(2)
NV = 2
CALL FREE(X,NV)
NA = X(1) +0.0001
NB = X(2) +0.0001
RETURN
END

SUBROUTINE IRD3(NA,NB,NC)
DIMENSION X(3)
NV = 3
CALL FREE(X,NV)

A = X(1) NA = X(1) +0.0001
B = X(2) NB = X(2) +0.0001
C = X(3) NC = X(3) +0.0001
RETURN
END

RETURN
END



30

(Sample Print-Out From nGAUS")

DICK ROWE TORSION PENDULUM PART II

OUTPUT FROM SUBROUTINE SUBSET

VALUES RUNNING
AS READ IN AVERAGE

22.2000 22.2000

RUNNING
SIGMA

RUNNING
SIGMA OF AVE

22.1000 22.1500 0.0704 0.0498
22.2000 22.1666 0.0596 0.0344
21.9000 22.0999 0.1419 0.0709
22.2000 22.1199 0.1305 0.0583
21.8000 22.0666 0.1757 0.0717
22.0000 22.0571 0.1622 0.06134
22.0000 22.0499 0.1513 0.0535
22.3000 22.0777 0.1646 0.0548
21.9000 22.0599 0.1648 0.0521
22.0000 22.0545 0.1575 0.0475
22.0000 22.0499 0.1514 0.0437
21.8000 22.0307 0.1604 0.0445
22.2000 22.0428 0.1611 0'.0430
22.4000 22.0666 0.1809 0.0467
22.4000 22.0874 0.1938 0.0484
22.7000 22.1235 0.2395 0.0580
22.2000 22.1277 0.2334 0.0550
21.5000 22.0947 0.2686 0.0616
22.4000 22.1099 0.2703 0.0604
21.8000 22.0952 0.2720 0.0593
22.1000 22.0954 0.2653 0.0565
21.8000 22.0825 0.2665 0.0555
22.0000 22.0791 0.2611 0.0533
22.0000 22.0759 0.2561 0.0512
22.4000 22.0884 0.2592 0.0508
21.8000 22.0777 0.2605 0.0501
22.2000 22.0821 0.2569 0.0485
22.1000 22.0827 0.2520 0.0468
22.2000 22.0866 0.2488 0.0454
21.7000 22.0741 0.2543 0.0456
22.2000 22.0781 0.2511 0.0444
22.2000 22.0817 0.2485 0.0432
22.2000 22.0852 0.2454 0.0420
22.3000 22.0914 0.2449 0.0413
22.5000 22.1027 0.2505 0.0417
21.6000 22.0891 0.2508 0.0428
22.6000 22.1026 0.2701 0.0438
22.1000 22.1025 0.2662 0.0426
22.0000 22.0999 0.2633 0.0416
21.9000 22.0950 0.2620 0.0409
21.8000 22.0880 0.2630 0.0405
22.0000 22.0860 0.2603 0.0396
21.6000 22.0749 0.2672 0.0402
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22.3000 22.0799 0.2665 0.0397
22.5000 22.0891 0.2706 0.0399

22.3000 22.0935 0.2698 0.0393
22.0000 22.0916 0.2672 0.0385

22.3000 22.0958 0.2663 0.0380
22.2000 22.0979 0.2643 0.0373

THERE WERE 50 VALUES IN THE FULL CLEAN SET

BREAK UP VALUES INTO 7 SUBSETS OF

SUBSET AVE

7 VALUES EACH

ITS SIGMA

22.0571 0.1622
22.0285 0.1709
22.1999 0.4125
22.0428 0,2152
22.1285 0.1979
22.0714 0.3640
22.1428 0.2992

AVE OF AYES

22.0959

ORDERED VALUES

THEIR SIGMA AVE OF SIGMAS THEIR SIGMA

0.0635

DEV FROM AVE

21.5000 -0.5979
21.6000 -0.4979
21.6000 -0.4979
21.7000 -0.3979
21.8000 -0.2979
21.8000 -0.2979
21.8000 -0.2979
21.8000 -0.2979
21.8000 -0.2979
21.8000 -0.2979
21.9000 -0.1979
21.9000 -0.1979
21.9000 -0.1979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.0000 -0.0979
22.1000 0.0020

0.2603 0.0991
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22.1000 0.0020
22.1000 0.0020
22.1000 0.0020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.2000 0.1020
22.3000 0.2020
22.3000 0.2020
22.3000 0.2020
22.3000 0.2020
22.3000 0.2020
22.4000 0.3020
22.4000 0.3020
22.4000 0.3020
22.4000 0.3020
22.5000 0.4020
22.5000 0.4020
22.6000 0.5020
22.7000 0.6020

LOWER BOUND UPPER BOUND HISTOGRAM BARS

21.4999 21.7399 ****
21.7399 21.9799 *********
21.9799 22.2200 ************************
22.2200 22.4600 *********
22.4600 22.7000 ****

NOW LETS LOOK AT THE EXPECTED HISTOGRAM

COUNT EXPECT DIF DIF2 CHI2 LOWER UPPER

4.00 _3.69 -0.30 0.09 0.02 -0.59 -0.35
9.00 12.21 3.21 10.33 0.84 -0.35 -0.11

24.00 18.18 -5.81 33.75 1.85 -0.11 0.12
9.0.0 12.21 3.21 10.33 0.84 0.12 0.36
4.00 3.69 -0.30 0.09 0.02 0.36 0.60

50.00 50.00 12.85 54.61 3.59

THE LAST LINE OF VALUES GIVES SUMS OF VALUES IN COLUMNS
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HARMONIC MOTION

Anton F. Vierling
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INTRODUCTION

The integration of physics concepts with computer programming
skills has enabled students with rudimentary mathematical back-
ground to solve problems of increasing complexity. Both science
and non-science students, when required to solve physics problems
by the application of computer techniques; appear to grasp, not
only the basic concepts of physics, but the general capabilities
and limitations of the computer as well.

The two sample problems which follow can be solved by students
who have had only an elementary introduction to analytic geometry
and differential calculus. The discussion of these problems is in
two parts: part one deals with the description of simple harmonic
motion; part two deals with damped simple harmonic motion. Experi-
mentally, students in the second year of the science curriculum at
the Naval Academy were found to spend two to three terminal hours
on this material after having had one hour of experience with the
BASIC programming language and an introductory lecture on the phys-
ics involved.
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STUDENT MANUAL

Simple Harmonic Motion

Any motion that repeats itself in equal intervals of time is
called periodic, or harmonic. If a body moves about an equilibri-
um position due to a force that is proportional to the distance
from the equilibrium position to the body itself, then the body is
said to undergo simple harmonic motion. An ideal example of such
a system is a block set on a frictionless plane and attached to a
spring. (See Figure 1.) The force on the block due to the spring
is always such as to pull the block back to its equilibrium posi-
tion, (X = 0) and is properly called the restoring force. At
equilibrium, of course, the force of the spring on the block is
equal to zero. At any particular instant, the restoring force is

F = -K*X

where the asterisk (*) indicates multiplication. The minus sign
in the equation shows that this force will always be directed op-
posite to the displacement in the X-direction.

If Newton's Second Law, F = M*A, is applied to the motion of
the block of mass M, and if the force F is replaced by the ex-
pression -K*X, the following relationship results:

-K*X = M*A = M*(d2X/dT2)

since A (acceleration) is the second derivative of X with re-
spect to time, T. Thus

M*(d2X/dT2) + K*X = 0 (1.1)

which describes the periodic motion of the block-spring system.

From this differential equation of motion, the problem is to
determine the position of the mass at every instant of time after
the system has been given an initial displacement. Equation 1.1
is a second-order differential equation for which a numerical so-
lution can be obtained if a set of initial conditions are known.
For instance, in this example, it will be assumed that at time
T = 0, the instantaneous velocity of the block (dX/dT) is zero,
and the displacement x = 25 meters. (For idealized experiments,
the cost of equipment is no object.)

The first step in the solution of this problem is to re-write
Equation 1.1 as a system of first-order differential equations.
The solution of the first-order equations is relatively simple as
long as one remembers that the expression dX/dT is the slope of
the X versus T curve at any instant of time. To re-write the
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Figure 1



above second-order equations, recall the following definitions of

instantaneous velocity and acceleration:

V = dX/dT ; A = dV/dT = d2X/dT2

It is then possible to re-write Equation 1.1 as follows:

M*(dV/dT) + K*X = 0

or dV/dT = -K*X/M (1.2)

and dX/dT = V (1.3)

The problem can now be solved approximately if the incremental

changes in velocity (AV) and displacement (AX) which occur during

small changes in time (AT) can be approximated. In other words,

after a small change in time, (AT in BASIC will be called D), the

new displacement and velocity can be found by

X = X + AX

V = V + AV

A = -K*X/M

These equations are in the form of "assignment statements," X =

X + AX, which direct the computer to calculate a new value of X

by adding AX to the current value.

A crude first-order method for approximating the change in

displacement and velocity would be

AV = A*D

(change in velocity) = (acceleration)*(change in time)

AX = V*D

(change in displacement) = (velocity)*(change in time)

where A and V represent the acceleration and velocity respec-

tively at the beginning of the time interval. Therefore,

X = X + V*D

V = V + A*D

A = -K*X/M

A much better estimate could be made by using a weighted av-

erage of A and V which could be obtained from values at the

beginning, midpoint, and end of the time interval. (See Figures

2a and 2b.) In this figure, the initial slopes

X1 = X

V1 = V
Al = -K*Xl/M
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are used to predict the slopes, V2 and A2, at the midpoint of the
time interval, AT = D. Curved arrows indicate slopes of tangents
to the X-T and V-T graphs,

X2 = X1 + Vl*D/2

V2 = Vl + Al*D/2

A2 = -K*X2/M

Next, the values of V2, A2 are used to make a second predic-
tion of the midpoint values of the slopes V3 and A3 starting
from X1 and Vl. (See Figures 3a and 3b.)

X3 = X1 + V2*D/2

V3 = V1 + A2*D/2

A3 = -K*X3/M

Finally, this set of slopes is used to predict the values of the
slopes V4 and A4 at the end of the time interval (D), starting
from Xl and Vl. (See Figures 4a and 4b.)

X4 = X1 + V3*D

V4 = V1 + A3*D

A4 = -K*X4/M

The theory of the Runge-Kutta approximation shows that if the
slopes are weighted by factors 1/6, 2/6, 2/6 and 1/6, respectively,
then the approximation will be fourth-order; i.e., correct to within
errors proportional to D5. Thus, if we set

V = (V1 + 2*V2 + 2*V3 + V4)/6

A = (Al + 2*A2 + 2*A3 + A4)/6

then the new values of displacement and velocity are found by using
the weighted averages as follows:

X = X + V*D = X + (V1 + 2*V2 2*V3 + V4)*D/6

V = V + A*D = V + (Al + 2*A2 + 2*A3 + A4)*D/6

Note that the values of Xl, X2, X3 and X4 were computed in order
to obtain the corresponding slopes Al, A2, A3 and A4 of the V-T
curve, which in turn predicts the next value of V which predicts
the next value of X and so on.

The above algorithms have been incorporated into the computer
program SIMPLE HARMONIC MOTION for the determination of the displace-
ment, velocity and acceleration at equal increments of time after the
mass is set in motion. This program is designed to give graphic out-
put of X(T) directly, however, the PRINT statement, number 300,
can be changed to

300 PRINT T, X, V
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for nLaerical output. TO, X0, and VO are initial values of T,
X and V.

100 REM *************** SIMPLE HARMONIC MOTION ***************
120 REM
130 REM * * * * * * * * * * * * * * INPUT DATA
140 REM
150 READ K, D, TO, X0, VO, M
160 DATA 2.8, 0.1, 0, 25, 0, 1
170 PRINT "SPRING CONSTANT = "K"NEWTONS/METER"
180 REM
190 REM * * * * * * * * * * * INITIAL CONDITIONS
200 REM
210 LET T = TO
220 LET X = XO
230 LET V = VO
240 LET N = 0
250 REM
260 REM * * * * * *r * * * * * PLOT ROUTINE
270 REM
280 PRINT " X - DISPLACEMENT IN METERS"
290 PRINT
300 PRINT TAB(33); "0"
310 PRINT "SECONDS 18.

320 PRINT "
330 LET Yl = INT(X + .5) + 36
340 PRINT T; TAB(Y1); nlog

350 LET N = N + 1
360 IF N = 40 THEN 580
370 REM
380 REM * * * * * * * * * * * * CALCULATE SLOPES
390 LET X1 = X
400 LET V1 = V
410 LET Al = -K*Xl/M
420 LET X2 = X1 + Vl*D/2
430 LET V2 = V1 + Al*D/2
440 LET A2 = -K*X2/M
450 LET X3 = X1 + V2*D/2
460 LEX V3 = V1 + A2*D/2
470 LET A3 = -K*X3/M
480 LET X4 = X1 + V3*D
490 LET V4 = X1 + A3*D
500 LET A4 = -K*X4/M
510 REM * * * * * * * * * * NEW VALUES OF X, V, AND A
520 LET X = X + (V1 + 2*V2 + 2*V3 + V4)*D/6
530 LET V = V + (Al + 2*A2 + 2*A3 + A4) *D/6
540 LET A = -K*X/M
550 LET T = T + D
560 SETDIGITS(3)
570 GO TO 330
580 END
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SPRING CONSTANT = 2.8 NEWTONS/METER

TIME X-DISPLACEMENT X-VELOCITY
(SECS.) (METERS) (METERS /SECOND)
0 30 0

.05 29.9 -4.2

.1 29.6 -8.36

.15 29.1 -12.5

.2 28.3 -16.5

.25 27.4 -20.4

.3 26.3 -24.2

.35 25. -27.7

.4 23.5 -31.1

.45 21.9 -34.3

.5 20.1 -37.3

.55 18.2 -39.9

.6 16.1 -42.3

.65 13.9 -44.5

.7 11.7 -46.2

.75 9.32 -47.7

.8 6.9 -48.9

.85 4.44 -49.6

.9 1.94 -50.1

.95 -.566 -50.2
1. -3.07 -49.9
1.05 -5.55 -49.3
1.1 -8. -48.4
1.15 -10.4 -47.1
1.2 -12.7 -45.5
1.25 -14.9 -43.5
1.3 -17.1 -41.3
1.35 -19.1 -38.8
1.4 -20.9 -36.
1.45 -22.6 -32.9
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SPRING

SECONDS
0

.1

.2

.3

.4

.5

CONSTANT = 2 . 8 NEWTONS/METER

X - DISPLACEMENT IN METERS

0

.6
*

.7 *

.8 *

.9 *

1. *

1.1 *

1.2 *

1.3 *

1.4 *

1.5 *

1.6 *
1.7 *

1.8 *

1.9 *

2. *

2 . 1 *

2 . 2 *

2 . 3 *

2 . 4 *

2 . 5 *

2 . 6 *

2 . 7
*

2 . 8
*

2 . 9
*

3.
3.1
3 . 2
3 . 3
3 . 4
3 . 5
3 . 6
3 . 7
3 . 8
3 . 9

*
*
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SPRING CONSTANT

SECONDS
0
.1
.2
.3
.4

= 5 . 6 NEWTONS/METER

X - DISPLACEMENT IN METERS

0

.5 *

.6 *

.7 *

.8 *

.9 *

1. *

1.1 *

1.2 *

1.3 *

1.4 *

1.5 *

1.6 *

1.7 *

1.8 *

1.9 *

2. *

2 . 1 4

2 . 2 *

2 . 3
2 . 4
2 . 5
2 . 6
2 . 7
2 . 8
2 . 9
3.
3 . 1 *

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9 *

*
*

*
*

*
*

*
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Damped Harmonic Motion

In a real spring problem, such as one may study in the labora-
tory, the amplitude of oscillation gradually decreases to zero.
This is, of course, due to friction, and can be accounted for by
the addition of damping forces. The oscillations that result are
called damped harmonic motion. In Figure 5 friction has been sim-
ulated by taking a disk, which is attached to the spring-mass sys-
tem, and immersing it in a fluid. As a first approximation, one
could assume that the faster the disk moves, the greater will be
the force of friction, or, in equation form:

or,

friction force = -(constant)*(velocity in X-direction)

F = -B*(dX/dT)

The minus sign indicates that the friction force will be in a di-
rection opposite to the direction of motion at any instant of time.

In the free-body diagram, it is clear that both the spring
force (-K*X) and the friction force ( -B* (dX /dT)) act upon the mass,
M, at all times to produce the resulting damped harmonic motion.
Again, beginning with Newton's Second Law,

F = M*A

-K*X - B* (dX /dT) = M*(d2X/dT2)

dividing through this equation by M, and rearranging terms, yields

d2X/dT2 + B /M* (dX /dT) + K/M*X = 0 (2.1)

(Note: the computer reads K/M*X as (K/M)*X.) Equation 2.1 is a
second-order differential equation which can be very effectively
solved by numerical methods if proper initial conditions are given.
As in the previous problem, Equation 2.1 can be transformed to a
combination of first-order differential equations. First, by def-
inition, dX/dT = V, velocity, and dV/dT = d2X/dT2 = A, so that

dV/dT = -B/M*V - K/M*X (2.2)

In this manner, the problem has been reduced to one which contains
two first-order differential equations which can be solved, as be-
fore, by a series of approximations based on initial conditions and
estimates of the slopes at each increment of time AT (in BASIC AT
will be replaced by D).

and

Therefore, after each increment of time,

X = X + (V1 + 2*V2 + 2*V3 + V4)*D/6

V = V + (Al + 2*A2 + 2*A3 + A4)*D/6

and, from Equation 2.2,

(2.3)
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M

X= 0

Figure 5
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A = -B/M*V - K/M*X

The slopes, Vi through V4 and Al through A4 (velocities and
accelerations, respectively) at the four points shown in Figures
2, 3, and 4, are found as follows:

(let Cl = -B/M and C2 = -K/M)

X1 = X

V1 = V
Al = Cl *Vl C2 *Xl (from Equation 2.2)

These slopes predict the slopes at the midpoint of the time incre-
ment, D, by

X2 = X1 + Vl*D/2

V2 = Vi + Al*D/2

A2 = Cl*V2 + C2*X2

A second estimate of the slopes at the midpoint is made by

X3 = X1 + V2*D/2

V3 = Vi + A2*D/2

A3 = Cl*V3 + C2*X3

and, finally, the slopes at the end of the time interval are found

by
X4 = X1 + V3*D

V4 = V1 + A3*D

A4 = Cl*V4 + C2*X4

The only major difference between this and the undamped case is in
the calculation of A. Substitution into Equation 2.3 then yields
the desired values of X and V.

The DAMPED HARMONIC MOTION program which follows illustrates
the use of these algorithms to describe the motion of the system.
For the sake of clarity, the asterisks in the graphic output have
been connected by hand-drawn straight lines. You can easily com-
pare the results for different choices of parameters by superimpos-
ing one graph over another on a light-box or against a windowpane.
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100 REM *************** DAMPED HARMONIC MOTION ***************
110 REM
120 REM * * * * * * * * * * * * * * INPUT DATA
130 REM
140 READ K, B, M, D, VO, TO, XO
150 DATA 2.8, 0.4, 5, 0.10, 0, 0, 30
160 PRINT
170 PRINT "SPRING CONSTANT = "K"NEWTONS/METER"
180 PRINT
190 PRINT "DAMPING COEFFICIENT = "B"NEWTONS/METER/SEC"
200 REM
210 REM * * * * * * * * * * * * INITIAL CONDITIONS
220 REM
230 LET Cl = -B/M
240 LET C2 = -K/M
250 LET X = XO
260 LET V = VO
270 LET T = TO
280 REM * * * * * * * * * * PRINT COMPUTER OUTPUT
290 PRINT
300 PRINT "TIME","X-DISPLACEMENT", , "VELOCITY"
310 LET M = 0
320 PRINT T, X, , V
330 IF (T - 30) > = 0 THEN 570
340 REM * * * * * * * * * * * * CALCULATE SLOPES
350 LET M = M + 1
360 LET X1 = X
370 LET V1 = V
380 LET Al = C1 *V1 + C2*X1
390 LET X2 = X1 + Vl*D/2
400 LET V2 = V1 + Al*D/2
410 LET A2 = Cl*V2 + C2*X2
420 LET X3 = X1 + V2*D/2
430 LET V3 = V1 + A2*D/2
440 LET A3 = C1 *V3 + C2*X3
450 LET X4 = X1 + V3*D
466 LET V4 = Al + A3*D
470 LET A4 = Cl*V4 + C2 *X4
480 REM
490 REM * * * * * * * NEW VALUES OF X, V, A, AND T

500 REM
510 LET X = X + (V1 + 2*V2 + 2*V3 + V4)*D/6
520 LET V = V (Al + 2*A2 + 2*A3 + A4)*D/6
530 LET A = Cl*V + C2*X
540 LET T = T + D
550 IF M = 10 THEN 310
560 GO TO 330
570 END
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SPRING CONSTANT = 2.8 NEWTONS/METER

DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

TIME X-DISPLACEMENT VELOCITY
0 30 0

1. 24.9499 -10.1607
2. 11.5866 -15.9949
3. -4.7886 -15.801
4. -18.2324 -10.1108
5. -24.2815 -1.33245
6. -21.3957 7.23454
7. -11.2697 12.6184
8. 2.00713 13.1865
9. 13.5613 9.11154
10. 19.4955 2.17251
11. 18.173 -4.9898
12. 10.6138 -9.86009
13. -6.50444E-2 -10.9162
14. -9.89872 -8.08357
15. -15.5225 -2.64969
16. -15.2991 3.28984
17. -9.75677 7.62444
18. -1.23836 8.9659
19. 7.05587 7.07686
20. 12.2503 2.86502
21. 12.7719 -2.02169
22. 8.79869 -5.82688
23. 2.05266 -7.30666
24. -4.87397 -6.12401
25. -9,57636 -2.89649
26. -10.5765 1.09269
27. -7.81064 4.39351
28. -2.5336 5.9077
29. 3.22067 5.24474
30. 7.40841 2.80357
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SPRING CONSTANT = 2.8 NEWTONS/METER

DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS
0
1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

0

*

*
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SPRING CONSTANT = 5.6 NEWTONS/METER

DAMPING COEFFICIENT = .4 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS
0

1.

2.
3.

4.
5.
6.
7.

8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

0

*
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SPRING CONSTANT = 5.6 NEWTONS/METER

DAMPING COEFFICIENT = .8 NEWTONS/METER/SEC

X - DISPLACEMENT IN METERS

SECONDS
0

1.
2.
3.

4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

0

*

*

`V



TEACHER'S GUIDE

In this presentation, the functional relationships have been
developed in BASIC in order to facilitate the relation of the al-
gorithms describing the physics directly to the computer program.
For instance, in the first program initial conditions are defined
in line numbers 210 through 240 of the program. The plotting of
computer-generated output is directed by line numbers 280 and 340.
The four slopes estimating velocity and acceleration are calcula-
ted in line numbers 390 through 500. Time is incremented in line
550. The statement SETDIGITS (3) in line 560 is used to set the
size of the numbers to be printed by the computer, in this case,
three significant digits. It is included solely for esthetic rea-
sons.

Students should be encouraged to write a similar program and
to explore the effects on the period of changing the spring con-
stant, K, the mass, MI the initial displacement, X0, or the initial
velocity, VO. New values of K, M, X0, and 170 can be entered in
the data statement in line 160. The period can actually be deter-
mined from the plotted computer output, thus, allowing students to
graph the period versus any of the above variables to determine an
empirical relationship. (Recall that T = 2wik/K .)

In the second program numerical output is provided. However,
to enter the plot routine it is only necessary that line numbers
280 through 340 of the previous program must be added. Compare the
numerical output of this program (numbers are printed to six digits)
to the previous program, where the statement SETDIGITS (3) was used.
Students should be encouraged to investigate the effect on period
and amplitude of manipulating values of the spring constant, mass
and damping coefficient.

Solution of the differential equation describing the motion
of the damped spring-mass system can be found in most handbooks.
For comparison of results, students should program both the numer-
ical solution and the closed-form solution of this problem, which,
for TO = 0, is

X = d4/17m[X0 coswT + C sinwT}

where w = AK7g, C = V0 /w + (B/M)(X0/0

For the sake of realism, these equations have not been scaled
to dimensionless variables. However, programming could have been
simplified by scaling time to units of one period, T = t/T.

References

Halliday, D. and R. Resnick, Physics for Students of
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Hamming, R. W., Numerical Methods for Scientists and
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TWO EXPERIMENTS

Conservation of Momentum
and

Simple Harmonic Motion

David T. Grimsrud

Muhlenberg College
Allentown, Pennsylvania



INTRODUCTION

The two programs discussed here illustrate the use of the com-
puter as a computational adjunct to an introductory physics demon-
stration or laboratory. The programs are intended to aid the stu-
dent in analyzing the data acquired in the course of the experiment.
The first program, MOMEN, was developed to give immediate answers
for a lecture demonstration of the conservation of momentum. This
demonstration will be part of a one-semester "Physics for Poets"
course which does not have an associated laboratory. The students,
for the most part, are second-year students who have no preparation
in physics, but may-have studied another laboratory science for one
year.

Since this program has not been tested with any groups of stu-
dents, we omit mention of any student materials, except to say that
the students, by this juncture, will have been introduced to the
computer and will understand simple programming concepts. The
principle of conservation of momentum will have been discussed pri-
or to the demonstration.

The second program, PEND1, was written for use in the general
physics laboratory, in which simple harmonic motion is studied by
recording the position of a pendulum bob (see Figure 1) as it moves
through one cycle of its oscillation. This program has been used
by approximately 60 first- and third-year science majors concurrent-
ly studying calculus. The method of calculating velocities and
accelerations used in the program had been used previously in the
course, although the students had no previous experience with the
computer. The program was introduced in a written description giv-
en to the class a week prior to the experiment. The three-hour
laboratory period was devoted to a summary explanation of the ex-
periment and program, obtaining the data, keypunching these data,
running the program, and plotting the results.

Inasmuch as these two programs have had little classroom test-
ing, their student syllabi are not fully developed. However, a
student manual for the simple harmonic oscillator is presented in
the Appendix to this paper.
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TEACHER'S GUIDE

Conservation of Momentum

Experiments in the conservation of momentum in one dimension
are quite common in the classroom and can take many forms: a linear
air track may support two colliding gliders, two steel balls may be
hung on bifilar suspensions, etc. In such an experiment some device
must be provided to measure the position of the particles at equal
intervals of tire. An open-shuttered Polaroid camera and strobe il-
lumination, or the spark-trace attachment found on most air tracks,
would be appropriate. The positions indicated by these devices
permit calculation of velocities and thence momenta; the momentum
before collision is compared with the momentum after collision.

The program is divided into three parts: the velocity of each
particle before and after collision is calculated; the momenta are
determined; and the momentum of the system before the collision is
compared with the momentum after the collision.

The input data required by the program are:

1. Masses of two particles, M(1) and M(2).

2. The tine interval, DELT, between successive position
measurements.

3. The number, L, of position measurements before colli-
sion (chosen such that the number after collision is
also L).

4. The positions of the particles which
dimensional array DISP(I, 3, K).

a. DISP(I,1,1) I = 1, . . L give
of particle 1 before collision.

b. DISP(I,2,1) I = 1, . . L give
of particle 2 before collision.

c. DISP(I,1,2) I = 1, . . L give
of particle 1 after collision.

d. DISP(I,2,2) I = 1, . . Of L give
of particle 2 after collision.

The technique used to compute the velocity eliminates a common
error the student might make if he were performing the calculation
without direction. He is faced with the problem of finding the av-
erage interval between displacements separated by equal intervals
of time. If we label these positions X(1), X(2), . . X(K),
. . . and the intervals D(1) = X(2)-X(1); D(2) = X(3)-X(2); D(I) =

form the three-

the positions

the positions

the positions

the positions
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X(I+1)-X(I), his intuition will likely direct him to consider

D (I)

as the average value of the interval. Substitution of the measured
points X(1), . . X(n+1) into the above expression shows that it
reduces to

= n ( X(n+1)-X(1) )

which neglects most of the data obtained.

A more efficient technique (in the sense that each data point
is used once to find the average interval) is effected if the posi-
tion data are divided into two groups and paired to produce inter-
vals roughly one-half the total interval. These half-intervals are
then averaged, the time required to travel a half-interval is com-
puted, and the average velocity is found.

Assume, as an example, that nine position measurements (L = 9)
are made before the collision X(1), X(2), . . X(9). The pair-
ings chosen to evaluate the average half-interval in this case would
be X(9)-X(4), X(8)-X(3), X(7)-X(2), and X(6)-X(1) . To choose the
proper position index to subtract from X(9) we use integer division,
dividing L by 2 to give the integer variable L2. In this ex-
ample, L divided by 2 gives 9/2 which is equal to 4 in integer
arithmetic. The sum of the four half-intervals for the first parti-
cle ( X(9)-X(4) ) + ( X(8)-X(3) ) + ( X(7)-X(2) ) + ( X(6)-X(1) )

is computed and stored as the variable named INTOT(1,1). The aver-
age of these four determinations is called AVINT(1,1) and is found
by dividing by the real value of L2. Finally, since the value of
AVINT(1,1) contains the distance traveled in five time intervals,
we find the velocity of the first particle by dividing AVINT(1,1)
by the number of time intervals multiplied by the time per interval.

It would have been preferable to perform data reduction in
terms of standard deviations, thereby utilizing fully the data col-
lected,* however, the sophistication of the students in this course
does not admit of it, hence the above stratagem, which is clearly
preferable to being apprehended in the act of taking useless data.
The remainder of the computation proceeds very simply after veloci-
ties have been determined; momenta are calculated and values of
momenta before and after collision are compared.

MOMEN and a sample of its output are shown on the following
pages.

*"Data Reduction," Paul A. Smith, in Com uter-Based Physics:
An Anthology, R. Blum, et al, published by e commiElia-ainilege
iTysics (1969).
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Program: MOMEN

C T7E 3-DIMENSIONAL ARRAY DISP(I,J,K) CONTAINS INFORMATION ABOUT THE

C DISPLACEMENTS OF THE TWO MASSES INDEXED BY J. K IS ONE FOR DIS-

C PLACEMENTS BEFORE COLLISION, TWO FOR THOSE AFTER. MASSES ARE DE-

C NOTED BY M(J). L GIVES THE NUMBER OF APPROXIMATELY EQUALLY SPACED

C DISPLACEMENTS SEPARATED IN TIME BY THE INTERVAL DELT
REAL M(2), INTOT(2,2), MOM1, MOM2
DIMENSION DISP(15,2,2), AVINT(2,2), VEL(2,2)
READ (2,10) M, DELT, L

10 FORMAT(2F5.1, F4.3, 12)
READ (2, 12) (((DISP(I,J,K), I = 1,L), J = 1,2),K = 1,2)

12 FORMAT(2F4.1)
C USE INTEGER DIVISION TO DIVIDE THE INPUT DATA INTO TWO PARTS

L2 = L/2
RL2 = L2

C FIX VALUES OF L AND L2 SINCE THEY WILL CHANGE IN THE DO LOOPS

N = L
N2 = L2

C COMPUTE TOTAL HALF INTERVAL VALUES
DO 100 J = 1,2
DO 100 K = 1,2
INTOT(J,K) = 0.0
L = N
L2 = N2

90 INTOT(J,K) = INTOTJJ,K) + DISP(L,J,K) - DISP(L2,J,K)

IF(L2 - 1) 100,100,80
80 L = L-1

L2 = L2 - 1
GO TO 90

100 CONTINUE
COMPUTE AVERAGE VELCCITIES
TIME = DELT*((N+1)/2)
DO 200 J = 1,2
DO 200 K= 1,2
AVINT(J,K) = INTOT(J,K)/RL2
VEL(J,K) = AVINT(J,K)/TIME

200- CONTINUE
14 FORMAT(' VELOCITY OF THE FIRST PARTICLE BEFORE COLLISION WAS',

XF6.1,/5X,' WHILE THAT OF THE SECOND PARTICLE WAS',F6.1)

WRITE(3,14) VEL(1,1), VEL(2,1)

16 FORMAT(' VELOCITIES OF THE PARTICLES AFTER COLLISION WERE',

XF6.1,' AND',F6.1' RESPECTIVELY.')
WRITE (3,16) VEL(1,2), VEL(2,2)
MOM1 = M(1)*VEL(1,1) + M(2)*VEL(2,1)

18 FORMAT(' TOTAL MOMENTUM OF THE SYSTEM BEFORE COLLISION WAS',

XF8.1)
WRITE(3,18) MOM1
MOM2 = M(1)*VEL(1,2) + M(2)*VEL(2,2)

20 FORMAT(' TOTAL MOMENTUM OF THE SYSTEM AFTER COLLISION, ON THE

XOTHER HAND, WAS ', F8.1)
WRITE(3,20) MOM2
DISCR = ((MOM1 - MOM2) / (MOM1 + MOM2)) * 100.
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22 FORMAT(' ri!HUS OUR SIMPLE EXPERIMENT HAS SHOWN TEAT MOMENTUM IS CON
XSERVED WITHIN ', F6.1)
WRITE(3,22) DISCR
WRITE(3,24)

24 FORMAT(' PERCENT. WHAT EFFECTS CONTRIBUTE TO THIS DISCREPANCY.')
CALL EXIT
END



Output:

VELOCITY OF THE FIRST PARTICLE BEFORE COLLISION WAS
WHILE THAT OF THE SECOND PARTICLE WAS 0.0

VELOCITIES OF THE PARTICLES AFTER COLLISION WERE
TOTAL MOMENTUM OF THE SYSTEM BEFORE COLLISION WAS

9.9

3.3 AND 13.3 RESPECTIVELY.
997.7

TOTAL MOMENTUR OF THE SYSTEM AFTER COLLISION, ON THE OTHER HAND, WAS 1007.7

THUS OUR SIMPLE EXPERIMENT HAS SHOWN THAT MOMENTUM IS CONSERVED WITHIN -0.4

PERCENT. WHAT EFFECTS CONTRIBUTE TO THIS DISCREPANCY.
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Simple Harmonic Motion

This program was written for use in the general physics labor-
atory at Muhlenberg. Simple harmonic motion is studied by making
a record of the position of a pendulum bob as the bob moves through
one cycle of its oscillation. A sketch of the apparatus is shown
in Figure 1. A spark-trace record of the position of the bob is
left on sensitized paper placed beneath the pendulum on a curved
support. The student measures positions from the paper, plots
these results, computes velocities from displacements, plots these
values, and finally computes and plots accelerations. The three
graphs obtained are compared to the trigonometric functions which
describe the system.

Figure 1

The input for the program is:

1. The time interval in seconds between successive sparks,
DELT.

2. The total number of data points, J.

3. The ordered positions, in centimeters, of the J points.

We require that the position of the J points be measured from
the midpoint of the motion (which was marked on the sensitized paper)
so that the data have the approximate form R sin(wt) where R =
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amplitude of oscillation. A typical trace is sketched in Figure 2.
Furthermore, the initial data point should be the last negative val-
ue of the position (1) of the bob before it swings positive. The
J position coordinates are punched on cards using a free style in-
put, i.e., the actual number (including its decimal point in the
appropriate place) is punched, a space, another number, space, etc.*

The initial computation in the program is the angular frequency
of the motion. The first zero of displacement from the vertical
occurs (by design) between the first two points (1) and (2). This
location is found by linearly interpolating between these points.
Since the points then become positive, the next zero occurs just be-
fore the next subsequent negative position (3). Assuming that the
midpoint of the motion has been correctly identified, the time be-
tween the two zeroes is one-half the period.

Figure 2

The phase angle and approximate amplitude R are then calcu-
lated, the latter simply being identified as the maximum of the
absolute values of the displacement. Differences between successive
positions are determined and, by multiplying by the reciprocal of
the time interval, the average velocity in that time interval is
found. Similarly, differences in velocity multiplied by the recip-
rocal of the time interval give average accelerations.

For purposes of plotting graphs the expected values of the
displacement R sin(wt), velocity Rw cos(wt), and acceleration
-Ruiz sin(wt) are computed at times corresponding to the times for
which the experimental values have been calculated.

The six columns of print-out are double spaced. In this way
the velocities w!lich approximate the instantaneous velocity at the
midpoint of the interval between two displacements can be placed on
lines which alternate with the displants. In a similar fashion
the accelerations are printed on lines ;which alternate with the ve-
locities.

*Smith, Paul A., sk. cit.
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Program: PEND1

DIMENSION X(90), V(90), DIFF(90), XSIN(90), DIF2(90), A(90),ASIN(9
10), VCOS(90)
READ (2,10) DELT, J

10 FORMAT (F5.3, 12)
IF(DELT) 50,50,12

12 IF (J) 50,50,14
14 CALL FREES (X,J)

C CALCULATE THE ANGULAR FREQUENCY OF THE OSCILLATION
ZERO = X(1)/(X(1) - X(2) )

J2M = (J/2) - 4
DO 60 I = J2M,J
IF (X(I)) 70,70,60

60 CONTINUE
70 ZERO1 = I -7 2 + X(I -1)/(X(I -1) - X(I))

T2 = (ZERO1 - ZERO ) * DELT
OMEGA = 3.141593/T2

C CALCULATE THE PHASE ANGLE OF THE MOTION
PHI = ZERO * OMEGA * DELT

C CALCULATE THE APPROXIMATE AMPLITUDE OF THE MOTION
XMAX = X(1)
DO 100 I =
IF (ABS(X(I)) - XMAX) 100,100,90

90 XMAX = ABS(X(I))
100 CONTINUE

C CALCULATE THE AVERAGE VELOCITY BETWEEN X (I) AND X (I +1)

J1 = J - 1
TDELT = 1.0 / DELT
DO 200 I = 1, J1
DIFF(I) = X(I+1) - X(I)
V(I) = DIFF(I) * TDELT

200 CONTINUE
C CALCULATE THE AVERAGE ACCELERATION BETWEEN V(I) AND V(I+1)

J2 = J - 2
DO 300 I = 1, J2
DIF2(I) = V(I+1) - V(I)
A (I +1) = DIF2 (I) * TDELT

300 CONTINUE
C COMPUTE THE EXPECTED VALUES OF DISPLACEMENT AND ACCELERATION

ARG = OMEGA * DELT
OMEG2 = OMEGA * OMEGA
DO 400 I = 1,J
RLI = I
XSIN(I) = XMAX * SINi(RLI - 1.0) * ARG - PHI)

ASIN(I) =-OMEG2 * XSIN(I)
400 CONTINUE

C COMPUTE THE EXPECTED VELOCITY AT THE MIDPOINT OF A DISPLACEMENT

C INTERVAL
AMPV = XMAX * OMEGA
ARG2 = ARG * 0.5
VCOS (1) = AMPV * COS (ARG2 - PHI)
DO 500
RLI = I
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vrosol = AMPV * COS((RLI * ARG) - ARG2 - PHI)
500 CONTINUE

WRITE (3,16) OMEGA, XMAX
16 FORMAT(' THE ANGULAR FREQUENCY AND AMPLITUDE HAVE VALUES' 2F10.2/)

WRITE (3,18)
18 FORMAT(' WHAT UNITS ARE ASSIGNED TO THE QUANTITIES LISTED ABOVE'/)

WRITE (3,19) PHI
19 FORMAT(' THE PHASE ANGLE HAS THE VALUE IN RADIAN MEASURE OF MINUS
X ' F10.4 / )
WRITE (3,20)

20 FORMAT ( ' POSITION RSIN(WT) VELOCITY
X ACCELERATION - RWWSIN(WT)')
WRITE (3,21)

21 FORMAT( ' CM CM CM/SEC
X CM/SEC/SEC CM/SEC/SEC / )
WRITE ( 3,22) X(1), XSIN(1), V(1), VCOS(1)

22 FORMAT(F10.2, 6X, F9.2/ 31X, F9.1 , 6X, F9.1)
WRITE ( 3,24) (X(I) , XSIN(I) , A(I) , ASIN(I)

XI = 2, J1)
24 FORMAT( F10.2, 6X, F9.2, 36X, F9.0, 6X, F9.0/ 31X,

WRITE (3,26) X(J),XSIN(J)
26 FORMAT (F10.2,6X,F9.2)
50 CALL EXIT

END

RWCOS (WT)

CM/SEC

V (I) VCOS (I)

F9.1,6X,F9.1)
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APPENDIX

Student Manual for Pendulum Experiment (Simple Harmonic Motion)

The apparatus used in this experiment [Figure 1] is a pendu-
lum made of a pointed metal bob suspended from a long wire. A
strip of sensitized paper is placed parallel to the trajectory of
the bob on a curved metal track. At regular intervals of time a
large potential difference is applied between the bob and tne
metal track causing a spark discharge. After one period of motion
of the pendulum, the paper attached to the metal track contains a
record of the position of the bob as a function of time. A typi-
cal paper record is shown below the apparatus sketch [Figure 2].

We must extract from the tape not only position vs. time in-
formation, but also the velocity and acceleration of the bob at
equal intervals of time. This is a data reduction problem in which
a large number of similar calculations must be performed. It is,
therefore, an ideal problem to be handled by a computer.

We assume that a computer is still a "black box" to most of
you, i.e., that you have had little or no experience working with
one. It is then appropriate to give a brief description of the
function of a computer.*

Imagine that you have employed a secretary who is efficient
but not very intelligent. We can easily catalog the skills that
she probably possesses. She can:

1. perform simple mathematical operations--addition,
subtraction, multiplication, and division.

2. file information in definite locations and remember
what these locations are.

3. follow carefully detailed instructions step-by-step.

4. compare two numbers and decide which is the greater.

5. type information as it accumulates.

These are not extreme standards to require in hiring a secretary.
However, they represent the five functions performed by a computer.
Why then are computers considered, for better or for worse, such
an important part of our technological civilization? The answer
is simple--speed. Because a computer can perform a calculation so

*See, for example, Fortran for Physics, A. M. Bork, Addison-
Wesley Publishing Co., Inc., ReaUngl Massachusetts (1967).

68



69

much more rapidly than any other calculating device, it can com-
plete any problem in a brief period of time that a human could do
only in an unreasonable amount of time. This change of time scale
permits us to contemplate operations with a computer which would
be in the realm of fantasy without this tool.

Muhlenberg installed an IBM 1130 computer system in the fall
of 1968. Its justification in an educational institutizn depends
on its usefulness as a computational tool, as a bookkeeping device,
and as a teaching machine in Skinner's sense.

We wish to use the computer as a computational tool. To at-
tack the problem of communicating with the computer, we must first
decide what calculations we are to perform. Since we must make a
graph of position, velocity, and acceleration and compare these
with the theoretical values:

X = R sin(wt - 0)

V = Vm cos (cat - 0)

A = -Am sin (cat - 0)

we see that we must calculate velocity, acceleration, and tha quan-
tities R, w, and 0.

The program, i.e., the set of instructions which directs the
computer to perform the calculations we need, is written in a lan-
guage called FORTRAN (for FORmula TRANslation). The language was
designed to conform closely to the actual structure of algebraic
calculations. A copy of the program is attached to this supplement.
This program is stored in the memory of the machine; to run the
program you need only enter data (the positions of the bob) in the
form of punched cards.

Perhaps the simplest way to understand both the computation
procedure and the program is to look at the program and follow its
statements through the calculation. Note that all statements pre-
fixed by the letter C in the far left hand column are comments
inserted into the program to clarify steps for the reader. They're
ignored by the machine. We shall use them as "chapter headings."

C CALCULATE THE ANGULAR VELOCITY OF THE OSCILLATION

The angular velocity w is equal to 2ir /T where T is the
period of oscillation. We assume the positions of the bob (mea-
sured from the midpoint of the motion) are entered into the machine
consecutively beginning with the last negative value before the bob
swings positive. We then find the time for which the pendulum bob
had zero displacement. Subsequent positions are searched to find
the next time the displacement was zero. The difference between
these two times is one half the period; the angular velocity follows
directly.
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C CALCULATE THE PHASE ANGLE OF THE MOTION

The displacement X is given by the expression R sin(wt-.).
When X is zero, the phase angle 4) = wt. The statement after the
comment referred to above performs this calculation.

C CALCULATE THE APPROXIMATE AMPLITUDE OF THE MOTION

This step illustrates quite nicely two programming techniques,
use of the IF statement and use of the DO loop.

The position data are denoted X(I) where I goes from one
to the total number of data points. The technique we use to find
the amplitude is simply to look at the absolute value of each X(I)
and determine if it is larger than some other value of X(I) that
we have assigned the value of XMAX. If it is larger we set the
present value of X(I) equal to XMAX. XMAX is originally set
equal to X(1).

Using the DO statement we let X(I) go from X(2) to X(J)
(J is the total number of data points) by steps of one. Each
value of X(I) is tested by the statement:

IF (ABS(X(I)) XMAX) 100,100,90

This means:

1. Take the absolute value of X(I).

2. Subtract from this XMAX.

3. If the result is

a. negative--go to statement-100.
b. zero--go to statement 100.
c. positive--go to statement 90.

Statement 90 changes XMAX from any previous value it had to a
new value, viz, the absolute value of the present X(I). The pro-
gram then moves to statement 100 and then back to the beginning
of the DO loop to increment I by one until I = J.

C CALCULATE THE AVERAGE VELOCITY BETWEEN X(I) AND X(I+1)

You have made this calculation in two previous experiments.

V(4 = ( X(I+1) - X(I) )/ DELT

where DELT is the time interval between two successive points.
We identify this velocity as the average velocity evaluated at the
midpoint of the interval between X (I) and X(I+1). For this rea-
son the velocity and position appear in the print-out spaced on
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alternate lines.

C CALCULATE THE AVERAGE ACCELERATION BETWEEN V(I) AND V(I+1)

This calculation is the same as that directly above

A(I+1) = ( V(I+1) - V(I) )/ DELT

This represents the average acceleration between the two veloci-
ties.

The program concludes by calculating

R sin(wt

Rw cos (wt

-Rw2 sis(wt -

for the values of time associated with the computations above.

Using the print-out, make three graphs: one of the displace-
ment vs. time, the second of velocity vs. time, and the third of
acceleration vs. time. Each should show experimental (or calcula-
ted) and theoretical results. Why does the agreement between
theory and experiment become steadily worse as we move successive-
ly from displacement to velocity to acceleration?
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INTRODUCTION

In the Physics Department at Colorado State University we
have consciously endeavored to stimulate students to use the com-
puter in their course work In the introductory physics courses
with calculus, we have fostered the generation of programs written
by students and pertaining to the subject matter of the course on
a voluntary basis. In the graduate-level Electromagnetic Theory
course, problems were assigned to each student. The more experi-
enced were given realistic problems, while novices were required
to create function-generators. The program described here, ATOM,
was written by a student in the third and last quarter of a course
in general physics. It solves two types of problems: 1) the rel-
ativistic equations for the collision of two particles and 2) the
transformation of coordinates between center-of-mass and labora-
tory frame. It is unnecessarily complicated by including three
dimensions and the possibility of conversion between mass and ki-
netic energy.

All participants in the introductory course were treated as
individuals and asked to create a program on their own (with con-
sultation and help, of course). No manual was used, although a
few introductory FORTRAN IV sessions were held for those who had
no previous experience; in two one -hour sessions, I felt I could
get enough across for the student to write simple programs involv-
ing DO-loops, functions, data and printing. The chief virtue of
this method was that the novice students could choose a subject
which interested them, analyze it, program an extensive (for them)
calculation and make it work. The next step, if we carry on with
this program, would be to have them tackle a nontrivial calcula-
tion, one that could not be computed in a finite time with a slide
rule. The point in this effort is not in the quality of programs
created, but in the involvement of the student in the use of a
new, exciting, highly visible tool; one which many realize will
be as common to them as a slide rule. There is an excitement and
enthusiasm in solving problems of the relative difficulty and
length represented by some of these problems.
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STUDENT MANUAL

The program, ATOM, described here solves the conservation
equations for the collision of two sub-atomic particles. The input
data consists of the mass, velocity and direction of motion of two
particles before their collision and of one particle after the col-
lision. The program then computes the mass, velocity and direc-
tion of travel of the fourth particle. The total initial momentum
of the two particles is then used to compute the transformation
of variables to a frame of reference ("center-of-momentum" frame)
where the total momentum of the system is zero.

The fundamental physical principle involved is the conserva-
tion of the relativistic momentum vector and the relativistic
energy in the collision. For a single particle of rest mass m0,

vspeed v and velocity these quantities are defined by the
fundamental relativistic relations:

which imply

m = mo(1 - v2/c2) 2 (relativistic mass)

p = mv (relativistic momentum)

E = mc2 (relativistic energy)

E2 = p2c2 'licit

relating energy, momentum and rest mass (c = speed of light).

For a two-particle system the conservation equations are
thus expressed as

4- 4- 4- 4-

Pi P2 = P3 P4

El E2 = E3 E4

assuming that two particles, 3 and 4, recoil from the collision,
although they may not be of the same mass, individually or col-
lectively, as the original colliding particles, 1 and 2. This is
illustrated in Figure 1.

For ease of programming, it is necessary to "scale" the
variables appropriately; we shall do this by means of the follow-
ing substitutions:

V = v/c ; M = moc2 ; y = ii-=-V1
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which also imply
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= = Mil/y

E = M/y and V = P/E

E2 = p2 + M2

The input data to ATOM are eight values X1 M1, M2, M3, V1,

V2, V3, #1, and el and the index I = 1 for laboratory frame

of reference, or I = 2 for center-of-momentum frame of reference.

It is assumed that the direction of velocities and V determine

the x-axis, and, although the z-axis could have been determined by

requiring that it be in the plane of the x-axis and the recoil

velocities, the program was purposely written in a general three -

dimensional description. The direction angles, 0 and 8 were

chosen as shown in Figure 1, and are assumed given in degrees.

Every quantity to be output by the program is stored as a

two-dimensional array of form X(I,N) where I specifies the

frame of reference. The program starts by assigning storage space

to MASS, speed (VEL), magnitude of momentum (MOMENT), ENERGY,

SPHII, 0 (THETA), vector components of V3 (4ELtz3), V4 (VEL10,6) ,

P3, P4, etc. In some arrays an extra space is set aside as a con-

venient "working space."

After specification of numerous FORMAT statements the program

stores input data in the appropriate places (statement #41), and

proceeds (#34) to compute momenta and energies for particles 1, 2,

3, and 4. After computing 01 and el in radians, along with

the appropriate direction cosines, the components of 153 are cal-

culated (#707), and P4 is found from the conservation of momen-

tum. /.4. is computed from 154 (#23), followed by V4 (#24+1) and

finally, the rest mass is found (#24+3). The computation, for the

first frame of reference, is completed with the calculation of the

direction angles +2, 62 of the fourth particle, in degrees.

Following this, the program transforms to the alternate frame

of reference in ##702-800, essentially repeating the same computa-

tions as in the preceding paragraph, after which the stored values

are output (##36-40) in their appropriate formats. A listing of

ATOM and sample output is shown on the following pages.
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PROGRAM ATOM
REAL MASS(2,5),VEL(2,4),MOMENT(2,5),ENERGY(2,5),PHI(2.2)
REAL THETA(2,2),P(21,6),V(2,6),X(8),T(3),GAM(4),RUTH(2)

1 FORMAT (I2,3(F9.3),3(F9.6),2(F9.3))
2 FORMAT (1H0,*INPUT DATA IS FROM LABORATORY FRAME OF REFERENCE*)
3 FORMAT (1H0,*INPUT DATA IS FROM CENTER OF MOMENTUM FRAME OF REFERE

XNCE*)
4 FORMAT (1H0,30X1*COLLISION AS SEEN FROM LABORATORY FRAME*,13X,*COL

XLISION AS SEEN FROM CENTER OF MOMENTUM FRAME*)
5 FORMAT (1H0,30X,4(*PARTICLE *,I1,2X,),3X,4(*PARTICLE *,I2,2X))
6 FORMAT (1H ,10X, *MASS (MEV) *I7X14(F9,313X),*XX*12X14(F9.3,3X))
7 FORMAT (1H ,10X,*VELOCITY (X 1/C)*,4X,4(F9.3,3X),*XX*,2X,4(F9.3,3X

X))
8 FORMAT (1H ,10X,*ENERGY (MEV) *,7X,4(F9.3,3X)1*XX*12X14(F9.313X))
9 FORMAT (1H ,10X,*MOMENTUM ( MEV/ C)*, 4X,4(F9.3,3X),*XX *,2X,4(F9.3,3X

X))
10 FORMAT (1H0,10X,*MOMENTUM*)
11 FORMAT (1H ,14X,*COMPONENTS*)
12 FORMAT (1H ,19X1*X*110X14(F9.3,3X),*XX*,2X,4(F9.3,
13 FORMAT (1H ,19X,*Y*,10X14(F9.3,3X),*XX*,2X14(F9.3,
14 FORMAT (1H ,19X1*Z*,10X,4(F9.3,3X),*XX*,2X14(F9.3,
15 FORMAT (1H0,10X,*VELOCITY*)
17 FORMAT (1H ,19X1*X*110X,4(F9.6,3X),*XX*,2X,4(F9.6,
18 FORMAT (1H ,19X,*Y*110X14(F9.6,3X),*XX*12X,4(F9.6,
19 FORMAT (1H ,19X,*Z*,10X14(F9.6,3X),*XX*I2X14(F9.6,
20 FORMAT (1H0,10X/*DIRECTION OF*)
50 FORMAT (1H ,10X, *TRAVEL *)
51 FORMAT (1H ,13X, *PHI (DEGREES)*,4X14(F9.3,3X),*XX*
52 FORMAT (1H ,14X, *THETA (DEGREES) *14(F9.3,3X),*XX*
53 FORMAT (1H0,10X,*TOTAL MOMENTUM*124X,F9.3,21X1*XX*
54 FORMAT (1H ,10X, *TOTAL ENERGY *124X,F9.3,21X1*XX*
56 FORMAT (1H0)
58 FORMAT (1H0,20X,*VELOCITY OF CENTER OF MOMENTUM AS

XATORY = *,F18.7,* TIMES C .*)
ZZ = 57.2957795
Al = 0.0
A2 = 90.0

57 A3 = 180.0
A4 -- 0.0

READ(5,1) (I,(X(J),J=1r8))
GO TO(39,40),I

505 IF(X(4))861,862,862
861 A4 = 180.0
862 IF(X(5))41,860,860
860 A3 = 0.0
41 DO 21 J = 1,3

MASS(I,J) = X(J)
21 VEL(I,J) = X(J+3)

PHI (I,1) = X(7)
THETA(I11) = X(8)

34 DO 22 J = 11.3
GAM(J) = SQRT(1.0 - VEL(I,J)**2)
MOMENT(I,J) = (MASS(I,J) * VEL(I,J)) / GAM(J)

22 ENERGY(I,J) = MASS(I,J) / GAM(J)

3X))
3X))
3X))

3X))
3X))
3X))

,2X14(F9.3,3X))
,2X,4(F9.3,3X))
,20X,F9.3)
,20X,F9.3)

SEEN FROM LABOR



79

MOMENT(I,5) = MOMENT (I,1) + MOMENT(I,2)
ENERGY(I,5) = ENERGY (I,1) + ENERGY(I,2)
ENERGY(I,4) = ENERGY(I,5) - ENERGY(I,3)
PHIRAD = PHI(I,1) / ZZ
THETAR = THETA(I,1) / ZZ
T (1) = SIN ( PHIRAD) * COS (THETAR)
T (2) = SIN ( PHIRAD) * SIN (THETAR)
T (3) = COS(PHIRAD)
DO 707 J = 1,3
V(I,J) = VEL(I,3)*T(J)

707 P(I,J) = MOMENT(I,3)*T(J)
P(I,4) = MOMENT(I,5) - P(I,1)
P(I,5) = - P(I,2)
P(I,6) = - P(I,3)
M = 4
DO 23 J = 4,6

23 V(I,J) = P(I,J) / ENERGY(I,N)
SUM1 = 0.0
SUM2 = 0.0
DO 24 J = 4,6
SUM1 = SUM1 + V(I,J)**2

24 SUM2 = SUM2 + P(I,J)**2
VEL(I,4) =.SQRT(SUM1)
MOMENT(I,4) = SQRT(SUM2)
MASS(I,4)=SQRT(ENERGY(I,4)**2-MOMENT(I,4)**2)
X = ACOS(V(I,6)/VEL(I,4))
PHI(I,2) = X * ZZ
XX = ATAN(V(I15)/V(I,4))
THETA(I,2) = XX * ZZ
IF(V(I,5)) 701,702,702

701 THETA(I,2) = 360.0 - THETA(I,2)
702 IF(I.EQ.2) GO TO 26

II = 2
DO 704 J=1,2

704 RUTH(J)= MASS(I,J)/GAM(J)
VCM=(RUTH(1)*VEL(I,1)+RUTH(2)*VEL(I,2))/(RUTH(1)+RUTH(2))
GO TO 27

26 II = 1
VCM= -VEL(I,2)

27 DO 28 J=1,4
28 MASS(II,J) = MASS(I,J)

DO 29 J=1,2
29 VEL(II,J)=(VEL(I,J)-VCM)/(1.0-VCM*VEL(I,J))

GAMMA=SQRT(1.0-VCM**2)
DO 31 J=1,4,3
V7=1.0- VCMV(I,J)
V(II,J) = (V(I:J)-VCM)/V7
K1=J+1
K2=J+2
DO 31 L= K1,K2

31 V(II,L) = (V(I,L) * GAMMA) / V7
SUM1 = 0.0
SUM2 = 0.0
DO 32 J=1,3
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SUM1 = SUM1 + V(II,J)**2
K1 = J+3

32 SUM2 = SUM2 + V(II,K1)**2
VEL(II,3) = SQRT(SUM1)
VEL(II,4) = SQRT(SUM2)
DO 33 J=1,4
GAM(J) = SQRT(1.0 - VEL(II,J)**2)
ENERGY(II,J) = MASS(II,J) GAM(J)

33 MOMENT(II,J) = OtUS(II,J) * VEL(II,J) ) / GAM(J)
MOMENT(II,5) = MOMENT(II,1) + MOMENT(II,2)
ENERGY(II,5) = ENERGY(II,1) + ENERGY (II,2)
M=3
DO 25 J=1,6
V7 =SQRT(1.0-V(II,J)**2)
IF(J.EQ.4) M=4

25 P(II,J) = (MASS(II,M) * V(II,J)) / V7
L7 = 3
K = 3
N = 2
N4 = 1
DO 36 J=1,2
IF(J.EQ.1) GO TO 727
L7 = 4
K = 6
N = 5
N4 = 4

727 X = ACOS(V(II,K) / VEL(II,L7))
PHI(II,J) = X * ZZ
XX = ATANCV(II,N) / V(II,N4) )

THETA(II,J) = XX*ZZ
IF(V(II,N)) 800,36,36

800 THETA(II,J) = 360.0 - THETA(II,J)
36 CONTINUE

WRITE(6,4)
WRITE(6,5) ((I,I=1,4),(J,J=1,4))
WRITE(6,6) ((MASS(I,J),J=1,4),I=1,2)
WRITE(6,7) ((VEL(I,J),J= 1,4),I =1,2)
WRITE(6,8) ((ENERGY(I,J),J=1,4),I=1,2)
WRITE(6,9) ((MOMENT(I,J),J=1,4),I=1,2)
WRITE (6,10)
WRITE(6,11)
WRITE(6,12) ((( MOMENT( J, I),I= 1,2),P(J,1),P(J,4)),J =1,2)
WRITE(6,13) (CA1,A1,P(J,2),P(J,5),J=1,2))
WRITE(6,14) (011,A1,P(J,3),P(J,6),J=1,2))
WRITE (6,15)
WRITE (6,11)
WRITE(6,17) (UVEL(J,I),I=1,2),V(J11),V(J,4)),J=1,2)
WRITE(6 18) (CA1,A1, V(J,2),V(J,5),J=1,2))
WRITE(6,19) (CA1,A1,V(J,3),V(J,6),J=1,2))
WRITE(6,20)
WRITE(6,50)
WRITE(6,51) ((A4,A3, PHI(J,1),PHI(J,2),J=1,2))
WRITE(6,52) ((A2,A2, THETA(J,1),THETA(J,2),J=1,2))
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WRITE(6,53) ((MOMENT(J,5),J=1,2))
WRITE (6, 54) ((ENERGY(J,5),J=1,2))
WRITE (6, 58) ( VCM )
DO 55 J=1,5

55 WRITE(6,56)
GO TO 57

39 WRITE(6,2)
GO TO 505

40 iiRITE(6,3)
GO TO 505
END
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TEACHER'S GUIDE

Available for student use were a CDC 6400 and an IBM 1401,
neither one in a time-sharing mode; the language was FORTRAN. Job
cards were issued upon request by the instructor at the beginning
of the quarter, each good for one ten-second, ten-page run on the
6400 at a cost of $1. Students prepared, submitted and debugged
programs at their convenience. A "pep talk" on the importance and
relevance of computer calculations in science and engineering and
a selection of possible problems helps to involve the students and
to assure participation.

This program, ATOM, has run well in numerous tests, although
it is not safeguarded against zeros in denominators or imaginary
roots which could occur, because input is so free. In most cases,
we have restricted ourselves to elastic collisions in a plane (01,
= 0, M3 = Ml or M3 = M2).*

*Editor's Note: It might also prove of interest to compare
output from this program with that from the nonrelativistic pro-
gram MOMEN in D. T. Grimsrud's "Two Experiments" in Computer-Based
Physics: An Antholoa, R. Blum, et al, published by the Commis-
sion on College Physics (1969). Since conservation computations
are performed in terms of momentum and energy, it should be possi-
ble to modify ATOM to include Compton scattering as a special case
for which, say, V1 = 1 = V3. A logical branch in the case of in-
put V1 = 1 would then compute E1 = M1 = hv = hc/A and P1 = El
for the photon, omitting such undefined computations as #34-#22,
etc.
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A SIMULATED ACCELERATOR LABORATORY

R. C. Mikkelson

Macalester College
St. Paul, Minnesota



INTRODUCTION

A discussion of high energy particle physics is an integral
part of most modern physics courses. Laboratory exercises using
bubble chamber photographs are commonly employed to amplify the
experimental side of these studies while questions of conservation
laws and allowed reactions are covered in class and problem as-
signments. It is often very difficult for a student to capture
the true flavor of this fidld from classroom treatments alone.
Can a student be led to discover, or at least to test, the con-
servation laws as an active research participant? Is there a way
for him to build the particle spectrum as a result of his own
ideas and imagination?

The computer-based laboratory exercise presented here is a
first attempt to answer these questions. In this exercise the
student is asked to imagine himself as a theoretical physicist who
suggests experiments to a large accelerator laboratory. The gen-
eral idea is to allow the student to predict high energy particle
reactions and to test his predictions by "experiments" carried out
in the computer-simulated accelerator laboratory.

This laboratory exercise has been used during one term in a
pre-calculus course for freshmen, mostly prospective physics and
mathematics majors, called Introductory Modern Physics.* Since
the classroom discussion of the concepts involved in the laborato-
ry exercise did not come until the last week in the term, these
students were really given an opportunity to experience life as it
confronts the working physicist. Some took the exercise as a
challenge and only went to the literature after exhausting their
ingenuity and understanding. Others began by reading about the
field and then proceeded to test and verify their understanding.
Either approach seemed rewarding and succeeded in getting the stu-
dents to study the field with real enthusiasm. The only computer-
related skill required of the students for this exercise was card
punching. As used in this course the computer experiments by the
students were carried out during a six week period, so a fast turn-
around time was not essential. The computer used by the class was
an IBM 1130 operated in a hands-on, open shop where the students
could either submit jobs for batch processing or operate the com-

puter themselves.

A revised version of the "Student Manual" that was used by
38 students in the fall of 1968 is presented in the next section
which will both illustrate the flavor of the exercise and give the

*Interested parties may write the author to request further
information about this unique course.
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reader an introduction from the user's point of view. The "Teach-
er's Guide" which follows it contains more detailed information
about the simulation program and its use by students and concludes
with the data storage techniques used with the IBM 1130 -zystem, a
listing of the particles and reactions contained in the simulation
and complete program listings.



STUDENT MANUAL

Introduction

One Of the most interesting fields of contemporary physics
is particle physics, sometimes called "high energy" physics, be-
cause the pqVtiCleg involved in the experiments have very high
kinetic energies. The reactions take place in the GeV (109 eV)
region and above, whereas chemical reactions involve energies on
t;e order of one eV or so.

Now the question comes to mind, "How can those of us at a
liberal arts college, without access to a high energy accelerator,
get some firsthand knowledge Qf this field?" In our course on
modern physics we attempt to attack this problem by including two
experiments relqted to this field. One of these has become an
old standard in the course, the analysis of some actual bubble
chatber photographs.* A rather extensive write-up is available
for that experiment and you should read that write-up before pro-
ceeding with this new experiment. It is not necessary for you to
have actually worked on the bubble chamber photographs before
attempting this new project; but, it might make things clearer if
you have.

The new experiment, the subject of this write-up, requires
that you think of yourself as a theoretical "high energy" physi-
cist. You are working at one of the large accelerator laborator-
ies where you help plan new experimental projects and try to make
sense out of the experimental results. This allows you to ponder
the results of experiments, to ask the questions that lead to new
experirents and, hopefully, to discover the answers to your ques-
tions.

You might well ask, "What facilities do I have at my command?"
The answer to that is, "An entire accelerator laboratory--acceler-
ator, hydrogen bubble chamber, technical staff, and a crew to scan
the bubble chamber pictures." It will be up to you to decide on
the type of particle you would like to fire into the bubble cham-
ber. You will also choose the kinetic energy of this incident
particle. And, finally, you get to instruct the scanners to search
for up to three types of resulting particles by simply specifying
the masses of these "predicted" particles. This is all accom-
plished by letting the computer simulate the entire operation of
the accelerator laboratory.

By studying the types of reactions that can, and do, take
place at very high energies, a list of "particles" was selected as
being representative of those actually known to physicists. The
initial configuration of the simulation allows only protons to be

*See Welch Catalog, No. 2171--Bubble Chamber Photo Analysis
Apparatus.
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the target particles (a liquid hydrogen bubble chamber, remember?).
Initially, the incident projectile particles must be mesons,
and as work progresses on the simulation other projectile parti-
cles will become available; but you have to discover them first
using the it mesons. The work involved here is not just getting
the data--the laboratory supporting personnel do that for you- -
but rather in trying to make some sense out of it and planning new
experiments.

If you want to know more about the workings of an actual ac-
celerator and how a IT- + p reaction comes about, you should read
the write-up for the bubble chamber photo analysis experiment. If
you would like to know more about the particles you will "discov-
er" during the course of your experiments, you should read Chapter
10 in Beiser's paperback Modern Physics; An Introductory Survey,
Addison-Wesley, Reading, Mass. (1968), and from there head for the
library to the latest books on nuclear physics and particle phys-
ics, and to Scientific American articles. A list of possible
references may be found in the book by M. S. Livingston, Particle
Physics, McGraw-Hill, New York, N.Y. (1968), pp. 222-224. If you
want suggestions for further study, please ask your instructor.

As a theoretical physicist, what parameters do you think are
necessary to specify a particle, that is, to differentiate it from
another particle? Suppose you are told there exist two particles
with rest mass of about 939 MeV/c2, (c = speed of light) one with
positive charge and a second with no charge. At the present time,
physicists refer to these two particles as two "charge states of
the nucleon." You already know these particles by the names pro-
ton and neutron. In addition we know of the anti-nucleon states,
the anti-proton and anti-neutron. We thus use charge as one means
for differentiating particles. As you read about the elementary
particles, you will discover many other ways for differentiating
between them, but keep in mind that particles of equal mass but
different charge may very well be simply different charge states
of the same "fundamental particle" like the "nucleon."

As you read Chapter 10 in Beiser's book, you will become
aware that the lifetime of the particles is an important parameter.
Reactions that are "allowed" to take place by a strong interaction
will happen in the short time it takes for two particles to pass
one another while moving at a relative speed of approximately c.

If we take the diameter of a nucleon (proton or neutron) to be
about 10-13cm (one "fermi") this time comes out to be about 10-24
seconds. However, Mother Nature hasn't "allowed" everything to
happen that fast. In nuclear physics some reactions are called
"weak" interactions and they are found to take place about 1014
times slower than the strong interactions. The time associated
with weak interactions is thus about 10-10 seconds. You will find
both strong and weak interactions going on as indicated by the
lifetimes.

In the procedure section you will be guided through a trial
run. It is suggested that you have the computer do this run for
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you as the first step in using the "laboratory." The laboratory
will be at your disposal during the remainder of the term so you
may feel free to do experiments any time. It is intended that
this exercise occupy at least one week's worth of laboratory time.
Be sure to read the note at the end about "publishing" your re-
sults.

Experimental Procedure

For each experimental run you must supply the accelerator
staff with the identity of your projectile particle (a n- meson
initially) by specifying its mass and charge (137 MeV/c2 and -e
for w-). Then you must specify the laboratory kinetic energy of
this incident particle in MeV; 0-2500 MeV will cover the entire
range of simulated reactions. Only reactions with threshold en-
ergies within 10% of your specified energy will be detected.

Finally, once you decide on a projectile particle, you must
tell the picture scanners what you are looking for. That is, you
must "predict" the masses of up to three particles you expect to
have produced. The overwhelming number of pictures obtained from
an experimental run prohibits a complete analysis, so the photo
scanning process is programmed to reject any reactions that do not
result in one of the three particle masses specified by you. The
scanners can determine masses within ± 5%.

As a theoretician you are interested in the results of the
experiments. When the scanning crew finds a particle with a mass
specified by you, they will record the data and give you a run-
down of the significant reactions that occur during the experiment.
For example, suppose the 71- p collision produces two parti-
cles: (1) mass Mi and charge Qi, and (2) mass M2 and charge
Q2. You will be told these masses and charges. Suppose further
that particle (2) decayed after 10-8 seconds into two other par-
ticles that also appeared on the photograph. You will also be
told the masses and charges for these decay products and the life-
time of the parent particle (2). Since these ate.chreshold reac-
tions -the reaction products are assumed stationary in center-of-
mass coordinates.

In order to get down to earth let us consider the 71.- p
reaction as a trial run. Do you suppose there exists a particle
with half the nucleon mass? To be specific, we want to find out
whether the reaction n- + p + N + M(500) exists. Here we have
written N to stand for a nucleon (regardless of its charge state;
i.e., either a neutron or proton) and M(500) stands for the un-
discovered particle with rest mass around 500 MeV/c2. The in-
crease in mass-energy involved in producing the 500 MeV /c2 parti-
cle is the difference between the new mass and the pion mass,
500-137 = 363 MeV/c2. But we also know that some of the pion kine-
tic energy is effectively "lost" as center-of-mass energy and is
not available for appearance as rest mass. Using the conserva-
tion of momentum and total energy we can calculate the threshold
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kinetic energy Eth required for the pion to be able to produce
this new particle. The result of this derivation is

Eth (threshold kinetic energy) = QM/2m2 (Eq. 1)

where: Q = (initial total rest mass - final total rest mass)c2

M = (total final plus initial rest masses)

m2= (rest mass of target particle)

To be specific, Q = (939 + 137 - 939 - 500) MeV = 363 MeV

M = (939 + 500 + 939 + 137) MeV/c2 = 2515 MeV/c2

m2= 939 MeV/c2

Carry out the arithmetic and you predict a threshold kinetic ener-
gy of about 485 MeV as required for the incident pion. Let's pick
500 MeV as a round number recalling that our scanners give us a
5% tolerance on mass determinations.

The FORTRAN READ statement for this program is the following:

READ(2,201) Ml, IQ1, KE, MOUT(1), MOUT(2), MOUT(3)
201 FORMAT(6I5)

For input data we specify, as integers, the incident particle mass,
Ml, its charge in units of e, IQ1, its kinetic energy, and then
up to three mass values MOUT( ) we want the scanners to look for.
If we want the scanners to look for the new 500 MeV particle, a
nucleon and a pion, the data card would take the following form:

137 -1 500 500 939 137

In addition we need some XEQ cards and cards to define some stor-
age areas. The cards required to call the program and to specify
our data are as follows:

Columns: 5 10 15 20 25 30 35 40

Card 1: // JOB
Card 2: // XEQ PHYHE 01
Card 3: *FILES(10,PARTS),(1,REAC1),(2,REAC2)
Card 4: 137 -1 500 500 939 137
Card 5: blank

The computer will digest these five cards and print the following
messages:
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INITIAL EXPERIMENTAL CONDITIONS
INCIDENT PARTICLE MASS= 137 MEV/C2 WITH CHARGE= -1

KINETIC ENERGY OF PARTICLE BEAM = 500 MEV

SCAN IS FOR MASSES 500, 939, AND 137 MEV/C2

** PI MESONS ARE TOO NUMEROUS FOR A SCANNING REPORT
THE SCANNERS ARE IGNORING YOUR REQUEST

SCAN HAS DETECTED NO PARTICLES WHICH SATISFY YOUR CONDITIONS.

As you can read, the computer will verify that it understands your
specified initial conditions and then repeats 'your request for the
scanning masses. In this case the scanners will not look for pi
mesons (MOUT(3)) because they are simply too numerous, and finally
we are told that no reaction of the kind we sought has been found.

Now here is the first opportunity to make an educated guess.
Suppose you have a theory that some sort of particle exists which
is really a collection (molecule?) of five bound pions. You might
guess its mass to be 5x137=685 MeV/c2. If you use this mass to
calculate the laboratory threshold kinetic energy (Eq. 1) you pre-
dict about 790 MeV as the required energy for the incident pion.
We can now do a new experiment simply by replacing Card 4 by a new
card.

Card 4: 137 -1 800 500 939 685

where the incident pions have a kinetic energy of 800 MeV and the
scan will be made for particles of mass 500, 939, and 685 MeV/c2.
The program yields the output shown on the next page (Figure 1).

Surprise! There is a particle with about half the mass of a
nucleon. But, the most surprising part seems to be that it is not
produced as simply as we had supposed. We had to supply more en-
ergy, apparently enough so that a new heavier particle could be
produced to accompany our 496 MeV particle. Why didn't the neu-
tral 496 MeV particle appear in the first experiment when there
was certainly enough energy? Is there a conservation law acting
here that prevents the production of the neutral 496 MeV particle
in conjunction with, say, a neutron? Are there also charged par-
ticles with the masses 1115 MeV/c2 and 496 MeV/c2? We should note
that no 685 MeV/c2 particle was found. Does that mean it doesn't
exist or that we simply don't know how to produce it?

If you look at the decays of these two new particles you find
that the 1115 MeV particle decays in 2x10-10 seconds into either
a proton and pi-minus meson or into a neutron and pi-zero meson.
A weak interaction? What prevents a fast decay? Now look at the
496 MeV particle's decay habits. Nothing but puzzles! It seems
to be a Jekyll-and-Hyde particle. Is it one particle with two
different decay paths, or two particles with the same mass and
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INITIAL EXPERIMENTAL CONDITIONS
INCIDENT PARTICLE MASS= 137 MEV/C2 WITH CHARGE= -1

KINETIC ENERGY OF PARTICLE BEAM = 800 MEV

SCAN IS FOR MASSES 500, 939, AND 685 MEV/C2

SUCCESS. RESULTS FOLLOW.

PARTICLE (1) CG= 0 MASS= 1115
PARTICLE (2) CG= 0 MASS= 496

DECAY PRODUCTS OF PARTICLE (1) FOLLOW.
DECAY TIME = 0.20E-09 CG = 1

CG = -1

DECAY TIME = 0.20E-09 CG = 0

CG = 0

MASS =
MASS =

MASS =
MASS =

939
137

939
137

DECAY PRODUCTS OF PARTICLE (2) FOLLOW.
DECAY TIME = 0.70E-10 CG = 1 MASS = 137

CG = -1 MASS = 137

DECAY TIME = 0.70E-10 CG = 0 MASS = 137
CG = 0 MASS = 137

DECAY TIME = 0.40E-07 CG = 1 MASS = 137
CG = -1 MASS = 137
CG = 0 MASS = 137

DECAY TIME = 0.40E-07 CG = 0 MASS = 137
CG = 0 MASS = 137
CG = 0 MASS = 137

Figure 1
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charge? It either decays into two pions with a lifetime of 0.7
x10-i° seconds or it decays into three pions with a longer life-
time of 4x10-8 seconds. What is going on here?

Conclusion

Now you are on your own. It is hoped that you will come to
appreciate the methods, joys, and tribulations of the theoretical
physicist and that you will learn about the strange world of high
energy physics, while having fun doing it. You should not sit in
the computer room grinding out lots of numbers; instead, try to
think up experiments that will provide you with answers to your
questions. Keep track of your hypotheses, experiments, and mis-
cellaneous thoughts in your lab notebook. The reactions avail-
able to you do not exhaust all of those possible in nature, but
every effort has gone into providing a representative sample.

If you are lucky enough to discover new particles, you should
"publish" your results on the bulletin board. Your instructors
have started a "publication sheet" with their discoveries; you can
add your results to it, unless someone else publishes first. How-
ever, verify ideas carefully before "publication," and beware the
occupational disease of R.I.P. (Rushed Into Print).

To communicate your guesses or questions to other class mem-
bers, simply write a note and stick it on the bulletin board. It
is hoped that we may develop a small community of researchers, all
working and sharing results in their common goal of understanding
nature.



TEACHER'S GUIDE

Many simulations are designed for real time interaction be-
tween the user and the simulator. This acceleration laboratory
simulation is not. Rather, it is intended that a student will
try experimental runs primarily as tests for his ideas and will
spend some period of time between these runs thinking about the
results and planning new experiments. In order to encourage this
and to discourage a shotgun approach the program presented here
reads only one experimental specification per program execution,
hence, it is readily usable with nearly all computer systems,

time-shared or batch processed. In some cases there may be cost
considerations, a desire for short turnaround times, or limita-
tions on the number of computer runs allowed by any individual or

class per day. In situations like these, being able to read more
than one experimental specification per computer job could be
easily achieved through a minor modification of the source pro-
gram, such as relying upon an unsatisfied READ statement or a
test for negative Ml to terminate the program.

Our students were encouraged to 'publish" their discoveries
by filling in a chart that was tacked on a bulletin board outside
the lecturc room. The chart included columns for particle charge,

mass, lifetime, decay paths, and production technique. Additional
space on the bulletin board was reserved for theoretical "papers"
which consisted of short notes (by both students and instructor)
asking questions about the discoveries and pointing out special

properties. The students who worked hardest on the experiments
quickly discovered many of the easy particles and the other stu-
dents required reassurance that not everything had been discover-

ed. One pair of students discovered that the K- was available
for use as an additional incident particle before this fact was
revealed to the class by the instructor. Once the K- became
available many new reactions were possible and the late starters
were able to get into the act.

It would be a mistake to expect students to arrive at a com-
plete understanding of all the variations possible in this exer-
cise without a fair amount of outside help. In addition to being
encouraged to share their results and ideas with each other, our
students were expected to use other references, the two primary
ones being the book by Livingston, Particle Physics, McGraw-Hill,
New York, N.Y. (1968) and the article by Chew, Gell-Man, and Ro-
senfeld, Scientific American (February 1964).*

*See Editor's Note on following page.
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An opportunity for classroom discussion is essential for
collecting loose ends. Coming after the experimentation, such a
discussion can draw examples from the students' own "published"
results and can point out the limitations in the simulation
program. Furthermore, having prior information about the baryon
spectrum did not seem to dampen enthusiasm among our students.
Indeed, a theoretical prediction that a certain particle cannot
be produced by either the w- + p or the K- + p reaction can
be of more value than the publication of an accidental discovery
of some new particle.

This simulation exercise was developed for use in the lab-
oratory portion of an introductory course in modern physics.
However, there do seem to be other possible uses for this pro-
gram. For example, if a time-shared terminal could be made
available in the classroom, such a simulation program might be
very useful in a discussion session. Another possibility might
be a problem set where the students could use the simulation in
response to leading questions or as a check on their answers.

Editor's Note: To obtain the formula Eth = QM/2m2 given
in the Student Manual, recall that for an assembly of particles
the quantity

(total energy) 2 (total momentum)2c2

is invariant with respect to Lorentz transformations and that en-
ergy is conserved in the collision. In the center-of-mass system
the total momentum is, by definition, zero; and the energy before
collision, E', equals E", the energy after collision. However,
from the invariant, E' and E" are related to laboratory obser-
vations as follows:

Ef2 = 021 p.02 - p12c2 = Mn

where M" is the rest mass of the reaction products and
relativistic momentum of the projectile particle

Pi
2 c2 = (r q Eth) 2 m12 = 2miEth Eth2

Making the appropriate substitutions in the equation E'2= E"2

yields

Pi the

pr2 - (m1 4. m2)2 = 2Ethm2

and factoring the left-hand side of the equation as the differ-
ence of two squares leads directly to the desired relationship.

This method is discussed, with examples, in Appendix A of
Introduction to Elementary Particles, by W. S. C. Williams, Aca-
demic Press, New York, N.Y. (1961). The result can alit be de-
rived by straightforward but tedious calculations from conserva-
tion of energy and momentum. These can be found worked out in

detail in The Atomic Nucleus, by R. D. Evans, McGraw-Hill, New
York, N.Y.-7955), Chapter 12.
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Many of the limitations contained in the present program are
artificial and were included in order to reduce the development
and programming time or to limit the student's freedom. For ex-
ample:

1. The only particles available in the program are the
baryons up to mass 1688 MeV/c2, the w and K mesons,
and the muons.

2. The particle manifold masses are combined. For ex-
ample, both the proton and neutron appear as having a
mass 939 MeV/c2 and all the w-mesons appear with mass
137 MeV/c2.

3. Only reactions having thresholds within 10% of the
specified threshold energy are detected. This pre-
vents picking a high energy and learning about all the
reactions with lower thresholds in a single experiment.

4. No possibility has been included for reactions pro-
duced by secondary particles. Only w- + p and K-
+ p reactions and the decays of their resulting parti-
cles are included.

5. No information on the relative frequency of the vari-
ous reactions and decays is included.

6. Electrons, gamma rays and neutrinos are ignored as
being undetected.

A good case can be made for eliminating many of these limitations
in future versions of the simulation, particularly if it is to be
used by advanced students. It would not be difficult to include
more members of the meson family or to increase the energy range
and number of available-reactions. The decay schemes could be
greatly improved if electrons and gamma rays were included in the
particle list.

The Program

The basic operation of the program is as follows:

1. Input data is read and a list (Table 1) of 33 particles
is scanned to see if any of the given masses correspond to items
on the list. Each item is indexed and the identifying indices of
legitimate particle masses stored for later reference.

2. The program then scans a list (Table 2) of 24 possible
w- + p or 32 possible K- + p reactions, depending on Ml and
the threshold energy to determine which, if any, could give rise
to the anticipated particles.

3. If an otherwise eligible reaction from Table 2 is found
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not to contain the anticipated particles, then Table 1 is checked
again to see if they might not be decay products of the reaction
being examined. If successful, the program writes the result be-
2:-:)re returning to the next eligible reaction, if any, in Table 2.

As an illustration of how to read the particle table, Table
1 on the following page, we shall consider particle 21 which has
a mass of 1405 MeV/c2, charge 0, mean life 0.5x10-23 seconds.
The 12 numbers following the lifetime are the decay paths record-
ed in four groups of three particles. It follows that particle
21 has three decay paths (zeros have no meaning) into the parti-
cle pairs (9,-1) , (10,2), and (11,1). These integers refer to
other particle numbers and may be looked up in the particle table.
Negative particle numbers indicate the anti-particle. From the
last column of Table 1 we can identify the particle as a A";
its three decay paths are (E+,11--), (0,w()), and (E-,w+).

In Table 2 (page following Table 1) the reactions are listed
in order of increasing threshold energy. Reaction products are
given by particle numbers as found in the particle table. For
example, consider reactions 13 and 14 having a threshold energy of
219 MeV. These produce particles (7,4,2) and (7,5,2), which may
be identified as being (n,K1 ofwo) and (n,K20,10).

This simulation program was developed for use with the IBM
1130 version 2 disk monitor system. In this system, the above
particle table and reaction lists were stored as DATA FILES on
the system disk, using the auxiliary program listed in Figure 2.

Some readers may not be familiar with the DEFINE FILE state-
ment or with the Disk WRITE(NUM'J) XXX statement which appears as
statement numbers 1 and 2 in this program. The DEFINE FILE
statement gives information allowing the compiler to set up a
data file on the disk. The WRITE( ' ) statement is an instruc-
tion to "write on disk." Further details may be found in Using
the IBM 1130, by A. Bork, Addison-Wesley, Reading, Mass. (1968).

The simulation program itself was also stored on the disk
and could be called by the students using the short five-card
deck listed in the Student Manual. This program was stored under
the name PHYHE (Physics High Energy), hence the presence of that
name on the program execute card (// XEQ). The third card of
that deck is used to relate files numbered 10, 1, and 2 in the
program READ( ' ) statements to the names PARTS, REAC1, and REAC2
that were given to the particle table and reaction lists when
stored on the disk. The fourth card contains the input data, and
the last blank card simply insures that the card reader will read
the fourth card if no jobs follow this one.

The flow chart on page 100 is a rough presentation of the
simulation logic. It may be of some help to persons who attempt
a detailed understanding of the program, but it is included here
primarily to illustrate the gross program operation.
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DEFINE FILE 10(33,16,U,NEXT),1(24,4,U,NREC),2(32,4,U,NREC)
DIMENSION NOS(3,4),IP(3)
WRITE (3,300)
DO 1 J=1,33
READ (2,201)M,IQ,T,NOS
WRITE (3,301) J,M,IQ,T,NOS

1 WRITE (10'J)M,IQ,T,NOS
MAXR = 24
NUM = 1
WRITE (3,303)

11 DO 2 J=1,MAXR
READ (2,202)KE,IP
WRITE(3,302) J,KE,IP

2 WRITE (NUM'J)KE,IP
NUM = NUM+1
GO TO (99,3,99),NUM

3 MAXR = 32
WRITE (3,303)
GO TO 11

99 CALL EXIT
201 FORMAT
202 FORMAT
300 FORMAT

1, /
301 FORMAT
302 FORMAT
303 FORMAT

1
END

(2I5,E5.0,1215)
(415)

('1 PART MASS CHG
I NUM
("I4,16,15,E10.2

(15,I9,5X,315)
('1 REAC THRESH

I NUM ENERGY

LIFEI9X,IDECAY PRODUCT PARTICLE NUMBERS
TIME112X,I GROUPS OF THREE'/ )

,4(I6,214))

RESULTING'/
PARTICLES')

Figure 2



/\ READ EXPERIMENTAL CONDITIONS

INITIALIZE PARAMETERS

CAN
REACTION
EE DONE

es
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1111(

no
EXIT

STEP THROUGH
REACTION LIST

CHECK THRESHOLD ENERGIES
KEY2 = 1

ARE
REACTION

PRODUCTS IN
AN LIST

yes
"SUCCESS"

CHECK DECAY PRODUCTS
FOR

EACH REACTION PRODUCT

no
WRITE INFORMATION

ON REACTION PRODUCTS

IS A
DECAY PRO-

DUCT IN SCAN
LIST?

SAME

REACTION

no

H32 CONIINU714.

[ 35 CONTINUE

EXIT

WRITE INFORMATION
ON DECAY PRODUCTS

SO CONTINUE
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The program PHYHE uses a short subroutine called BETWN which
simply decides whether a number is below, within, or above some
upper and lower limits. The listings for BETWN and PHYHE follow.

SUBROUTINE BETWN (J,K,L,M)
C SUBROUTINE BETWN CHECKS WHETHER:VALUE OF VARIABLE J LIES
C BETWEEN VALUES OF VARIABLES K AND L.

M=1
IF(J-K)5,3,2

2 IF(L-J) 4,3,3
3 M=2

GO TO 5
4 M=3
5 RETURN
END

Program: PHYHE

DEFINE FILE 10(33,16,U,NEXT),1(24,4,U,NREC),2(32,4,U,NREC)
DIMENSION MO(3),IQ(3),MINM(3),MAXM(3),LP2(3,4),LP3(3,314),
IPN(15),NPR(3),TM(3),JCS(3)

C READ INITIAL EXPERIMENTAL CONDITIONS.
1 READ (2,201)M1,IQ1,KE, MO
WRITE (3,301)M1,IQLKE,M0
DO 3 IOUT=1,3
IF(MO(IOUT)-137) 3,2,3

2 WRITE (3,300)
MO(IOUT) = 0

3 CONTINUE
NR=24
IP=1
IF(137+(IQl*M1)) 12,5,12

12 NR = 32
IP = 2
IF(496+(IQl*M1)) 99,5,99

5 MINE = KE - (KE/10)
MAXE = KE
DO 6 J=1,3
MINM(J) = MO(J) - (MO(J)/20)

6 MAXM(J) = MO(J) + (MO(J)/20)
INDX =1

C FIND PARTICLES WHICH SATISFY SCAN CONDITIONS.
DO 8 NRC=1,33
READ(101NRC) M, IC,T,LP2
DO 8 J=1,3
CALL BETWN (M,MINM(J),MAXM1J),KEY)
GO TO (8,7,8),KEY

7 IPN(INDX)=NRC
INDX=INDX+1

8 CONTINUE
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MAXN0=INDX

C FIND REACTIONS PRODUCING THESE PARTICLES.
KEY1=1
DO 35 IB=1,NR
KEY2=1
READ (IPTIB)KET,NPR
CALL BETWN(KET,MINE,MAXE,KEY)
GO TO (35,21,36),KEY

21 DO 28 IL=1,MAXN0
DO 28 IM=1,3
IF(IPN(IL)IABS(NPR(IM)) )28,25,28

25 IF(NPR(IM)) 27,28,27
C BRANCH AT 27 WHEN PARTICLE NO. IM OF REACTION IB IS IDENTIFIED ASC ONE OF THOSE SOUGHT BY THE SCAN SPECIFICATIONS.

27 GO TO (41,42),KEY1
28 CONTINUE

C WHEN NO PRIMARY PARTICLES SATISFY SCAN CONDITIONS CHECK TOC FIND WHETHER DECAY PARTICLES ARE DETECTED BY SCAN.
KEY2 = 3
DO 32 IM=1,3
KEY3 = 1
NO = IABS(NPR(IM))
JCS (IM) = NPR (IM) /NO
IF(NO) 32,32,129

129 READ(10110) M,IC,T,((LP3(IM,MM,NN),MM=1,3),NN=1,4)
DO 32 IL= 1,MAXNO
DO 32 NN=1,4
DO 132 M2=1,3
IF(IABS(LP3(IM,M2INN))IPN(IL)) 132,30,132

C BRANCH AT 30 WHEN DECAY PRODUCT LP3 SATISFIES SCAN CONDITIONS.30 GO TO (41,130,41),KEY2
130 KEY2 = 2

GO TO (230,330), KEY3
230 WRITE(3,305) IM

KEY3 = 2
C WRITE INFORMATION ON DECAY PARTICLES.
330 KJ=IM

1-27=NN

GO TO 146
132 CONTINUE
32 CONTINUE
35 CONTINUE
36 GO TO (97,98),KEY1

C WRITE INFORMATION ON PRIMARY PARTICLES FOR SATISFACTORY REACTION.
41 WRITE (3,302)

KEY1=2
42 KJM = 0

DO 44 KJ=1,3
NO= IABS(NPR(KJ))
IF(NO) 44,44,242

242 READ(10sNO)M,IC,T,MP3(KJ,I1,I2),I1=1,3),I2=1,4)
TM(KJ) = T
JCS(KJ) = NPR(KJ)/NO
JQ = IC*JCS(KJ)
KJM = KJM + I
WRITE` (3,304) KJ,JQ,M

44 CONTINUE



C WRITE OUT DATA ON DECAYS OF EACH PRIMARY PARTICLE.
GO TO (143,130,130) ,KEY2

143 DO 50 KJ=1,KJM
WRITE (3,305) KJ
DO 50 12=1,4

146 I1M =0
DO 49 11=1,3
ICS = JCS(KJ)
MO(I1)=0
IQ(I1)=0
NUM=LP3(KJ,I1,I2)
IF(NUM) 46,49,47

46 ICS=NUM/IABS(NUM) * ICS
NUM=IABS (NUM)

47 READ (101NUM)M,IC,T,LP2
IF (M) 49,49,48

48 MO(I1)=M
IQ (I1) =IC *ICS
IlM =

49 CONTINUE
IF (I1M) 232,232,149

149 WRITE (3,306)TM(KJ),(IQ(I1),M0(I1),I1=1,I1M)
232 GO TO(50,132),KEY2
50 CONTINUE

GO TO 35
97 WRITE (3,303)
98 CALL EXIT
99 WRITE (3,307)

CALL EXIT
201 FORMAT (615)
300 FORMAT ('0 ** PI MESONS ARE TOO NUMEROUS FOR A SCANNING REPORT'/

1 ' THE SCANNERS ARE IGNORING YOUR REQUEST' )

301 FORMAT(11 INITIAL EXPERIMENTAL CONDITIONS'/

1' INCIDENT PARTICLE MASS=1I5,1 MEV/C2 WITH CHARGE=1I3/

2'0 KINETIC ENERGY OF PARTICLE BEAM =115,1 MENT1/

310 SCAN IS FOR MASSES 11-5,1,115,', AND 115,1 MEV/C21)

302 FORMAT ('0 SUCCESS. RESULTS FOLLOW.' /)

303 FORMAT(10 SCAN HAS DETECTED NO PARTICLES WHICH SATISFY YOUR CONDI

1TIONS.')
304 FORMAT(' PARTICLE (111,1) CG=' I3,' MASS =' I5)

305 FORMAT(10 DECAY PRODUCTS OF PARTICLE (111,1) FOLLOW.')

306 FORMAT(' DECAY TIME = 'E9.2,' CG = '12,' MASS = '15/

131X,'CG = '12,' MASS = II5/31X,ICG = '12,' MASS = '15)

307 FORMAT CO SORRY.' /' THE LABORATORY IS NOT ABLE TO PERFORM THE

1REQUESTED EXPERIMENT.')
END



COMPUTER SIMULATION OF A MASS SPECTROMETER

Thomas R. Harbron

and

Charles W. Miller

Anderson College
Anderson, Indiana



INTRODUCTION

Every college physics department desires the best and widest
range of equipment possible for its students to work with. For
departments with reasonably large enrollments this ideal may be
at least partially met. For departments with very small enroll-
ments, however, the purchase of many pieces of major equipment
cannot be economically justified. One answer to this problem is
the simulation of physics instruments on a digital computer. The
purpose of this paper is to describe how one such instrument, a
mass spectrometer, has been simulated on the Anderson College IBM
1620 computer, and how it is being utilized by the physics depart-
ment.

The program, MSSIM, is essentially a simulation of the Ealing
Small Mass Spectrometer as described in Ealing Corporation's 1969
Teaching Catalog [also see J. W. Dewdney, American Journal of
Physics 28, 452 (1960)]. Ions from a source, with some thermal
kinetic energy, are accelerated through a potential and deflected
in a magnetic field to a detector which measures the ion current.
The problem is to find the charge-to-mass ratio of the ions ob-
served, and from this information the student tries to determine
the isotope which is observed.

The instructor inputs on punched cards the "sample" to be
analyzed by the model. This sample consists of:

1. The mass of each isotope present.

2. The degree of ionization of each isotope.

3. The relative abundance of each possible ion.

He also inputs the value of the average initial kinetic energy of
the ions, and initializes the random number generator to provide
the "noise" current.

The remaining variables are then input by the student on the

console typewriter. These are:

1. Strength of the magnetic field.

2. Range of voltage to be swept.

3. Increment to be used in sweeping the voltage.

4. Width of the detector slit.

The computer calculates an ion current for each value of vol-
tage as it sweeps over the given range. The results are output on
punched cards showing the particular voltage and the ion current
associated with it. These cards may then be used as input to a

108



109

program which plots a graph of current versus voltage utilizing a
CALCOMP plotter.

Anderson College had no course in session during the semester
in which this program was written for which it would have been ap-
propriate to utilize this simulator, but this model will be used in
the Modern Physics laboratory to be offered Semester I, 1969-70.
Consequently, the Student Manual is not in its final form. In or-
der to test the model under classroom conditions, however, an upper
division student was engaged to perform two experiments with it.

The purpose of the first experiment was to study dispersion
and the results of using various detector slit widths. A plot of
the expected graph of mass versus accelerating voltage was made
and compared to the experimental analysis of a sample containing
93%K39 and 7%K41, all isotopes singly ionized. By varying the
slit width, different size detector current peaks were obtained
(see Teacher's Guide).

In the second experiment the student was to identify an un-
known element. An initial sweep was made to determine the loca-
tion of the different ion peaks using a narrow slit width, and
then localized sweeps were made of each peak using a wider slit
width to determine the relative abundance of the isotopes present.
The wider slit width was used in order to obtain flat-topped peaks
which were more accurate to measure than the more pointed peaks.
In this case the unknown was boron, and the sample consisted of
18% singly-ionized B10, 1% doubly-ionized B10, 77% singly -ion-
ized Bil, and 4% doubly-ionized B11.

The results of these experiments proved to be quite satisfac-
tory for both student and instructor. The first experiment led
the student to a clearer picture of dispersion; the second gave
him a better understanding of the use of the mass spectrometer as
an analytical tool, as well as valuable experience in handling
mass spectrometer data. Also, the student seemed to enjoy the
experiment, especially the challenge of determining the unknown,
which he did successfully. These conclusions are based both on
the written report turned in by the student and conversations with
him.

The instructor was also satisfied with the outcome of the ex-
periment and felt that the goal of giving the student some feel
for using a mass spectrometer without a large monetary investment
was achieved. This experiment showed that it was feasible to use
this simulator within the normal three-hour period assigned to the
Advanced Physics Laboratory course at Anderson College. In terms
of actual computer time, these runs averaged four minutes per
graph to calculate and 13 minutes per graph to plot. It is expec-
ted that other experiments will be planned in the future to allow
for even greater utilization of this simulator.



STUDENT MANUAL

Theory

The mass spectrometer model to be simulated in our experi-

ment is based upon the apparatus shown in Figure 1. The ions are

produced in the ion source, and ejected with thermal kinetic en-

ergies ranging from 0 to 2AV electron volts. They are then

accelerated through a potential of V volts to the source slits,

which are assumed to be of infinitesimal width, where they are

collimated. They now have kinetic energy (neglecting thermal

energies)

Y2mv2 = qV (1)

where m,q,v are the mass, charge and speed of the ion. The ions

are then deflected in a magnetic field, B. All ions that experi-

ence the same deflection and are brought together at an image

point have the same momentum, given by:

my = qBr (2)

where r = radius of curvature of the path followed by the ion.

These two conditions are simultaneously satisfied by ions with the

same charge-to-mass ratio,

2V
m ETET

(3)

thus the radius is given by:

r = 2mV/B2q (4)

A radius of r = Ro will bring the ions into the center of the

exit slit, which has a width S. Ions passing through the exit

slit will produce a measured current Id at the detector.

The focusing of such an instrument is not perfect as there is

an angular spread in the beam of any particular type of ion as it

leaves the magnetic field, due to thermal kinetic energy. As a re-

sult, the actual ion current reaching the detector is found by in-

tegrating over the width of the image slit, that is:

Id = J J(r) dr + In
Slit

Width

(5)

where J(r) is the linear density dIs/dr of true ion current

over the slit width as a function of radius of curvature, and In

is the random "noise" current of the system.
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O 0 0
Exit

0
Slit-+ iCircular arc of radius r = Fto

0 0 0 0 Detector
°O 000 Ro
0 0 0

Source Slits

Ion Source

Figure 1

In this model, the component of source current due to each
kind of ion present is determined by the following function:

AiQi

AiQi
i=1

(6)

where Ai = relative amount of given ion in sample, Qi = relative
charge of that ion, Io = total amount of beam current leaving
source slit, 5x10-9 amperes.

The ions will have a few eV of kinetic energy before they
are accelerated. While this energy is best described by a one
dimensional Maxwellian distribution, a triangular function is as-
sumed in the model. It is further assumed that a dispersion of
energy is equivalent to a dispersion of accelerating potential.
By differentiating r in Eq. (4) with respect to V, it is pos-
sible to find the difference in r, pr, caused by a change, AV,
in V:

Ar =
[P2c1 Tivd

The detector will measure the current caused by all ions
falling between R0 + S/2 and R0 - S/2. This component of de-
tector current is determined by the following:

21 1/2 [ AV
(7)

R0 +S /2

Is = f J(r)dr
R0 -S /2

(8)

For Sc<R0 then R0 -S/2 r R0 +S/2 gives radii of curvature
for which ions will enter the slit. The integral in Eq. (8) is
then evaluated for one of nine different cases, depending on which
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domains of definition of the equations of J(r) contain the limits

of the integral.

The total ion current passing through the slit (Is) is found

by summing the contribution made by all ions:

n
Is = Isi

i=1

The total detector current is then:

(9)

Id = Is + In (10)

where In is a random noise component.

Simulation

Parameters for the model fall in three categories as described

below:

1. Parameters set by the model:
a. Exit slit radius (R) = 4.00x10-2 meters.

b. Total beam current at source slit, I° = 5.0x10-9 Amps.

c. The variation in kinetic energies of ions leaving the

ion source (assumed to have a triangular distribu-

tion).

2. Parameters set by the instructor:
a. The mass mi (in AMU), charge Qi (in electron units),

and relative quantity Ai of each kind of ion pro-

duced by the ion source.
b. The maximum variation in ion energy (AV) in electron

volts (eV).
c. The peak noise current at the detector, Inmax

3. Parameters set by the student:
a. The value of B may be set at 1500 or 3000 gauss.

b. The upper and lower limits of acceleration voltage

(V).
c. The increments in V for each measurement.

d. The exit slit width (S) in millimeters.

A message from the computer will advise you to enter these para-

meters from the typewriter console in the following format:

Columns 1-14,
15-28,
29-42,
43-56,
57-70,

The output of

magnetic flux density, B
exit slit width, S
lower limit of accelerating voltage, VL
upper limit of accelerating voltage, VU
increment of accelerating voltage, VINC

the model consists of pairs of measurements of
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acceleration potential. V and corresponding detector current, Id.

These values are printed out together with control cards for plot-

ting graphs of Td versus V on the CALCOMP plotter. These

graphs will appear as isolated peaks. For very small slit widths,

S, the peaks will be very sharp; for wide slits the peaks will be

flat-topped "mesas" and the irregularities in the plateau of the

mesa will be a measure of the random noise current In which is to

be found in every electronic device. From this you may estimate

the random error in detector current measurements due to noise.

Due to the thermal motions of the ions leaving the source

there will be a dizpersion of values of Id about the peak value

of V so that the peak whether sharp or flat will not be abrupt,

but will have sloping sides resembling the so-called "Gaussian

distribution." To understand this remember that V only deter-

mines the curvature of the ion path, and not the actual number of

ions present.

Begin your experiment with an initial sweep using a narrow

slit width, e.g., S = 0.2 mm, to determine the charge-to-mass

ratios of the different ions present. Then repeat the run with

localized sweeps and a wider slit width to determine the relative

masses and abundances of isotopes of a given element whose pre-

sence will be indicated in the initial run by the appearance of

closely-spaced sharp peaks. Hint: what do you know concerning

the Qi of isotopes of the same element? You can also determine

the component of source current due to each type of isotope pre-

sent from Eq. (6). Use of a wider slit will enable you to deter-

mine average peak values of (Id)avg= Is more accurately from the

mesas.

What ions do you think are present in your unknown source,

and in what abundances? (Your periodic table of the elements

should be of some assistance in deciding what you actually have

from the charge-to-mass ratios.)



TEACHER'S GUIDE

The ions may have a few eV of kinetic energy before they

are accelerated. While this energy is best described by a one

dimensional Maxwellian distribution, a triangular distribution

function f(e) for current is assumed here to simplify calcula-

tions. This function is shown in Figure 2 and described as fol-

lows:
fi(e) = 0 ; e < 0 e > 2Ae (11)

fi (e) = (o

I el
fi (e) Aer-rjj

0 <e Ae

; De < e < 2Ae

Note that the total area under fi must equal the total current

due to the i-th ion:

fi (e)

Ii = f fi(e)de

fi = Ii/Ae
Ii /De

Le Ae

Figure 2. Triangular thermal distribution.

(12)

A further simplifying assumption is made concerning the en-

ergy distribution: that a dispersion of energy (1e) is equiva-

lent to a dispersion of accelerating potential (AV), hence, from

Eq. (7) the difference in r, 1R, caused by a change in kinetic

energy Ae = NV is

AR = 14 [
V1/2B

2qi 2]
AV

[ (13)
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The detector will measure the current caused by all ions
falling between R0 +S/2 and R0 -S/2. This component of detec-
tor current is determined by the following:

R0 +S /2

Is = I J(r)dr
R0 -S /2

(14)

where J(r) is the linear ion current density as a function of
r for a given value of B and V. J(r) must, like f(e), be a
series of triangular functions Ji(r), each centered about its ap-
propriate mean radius RM as shown in Figure 3.

r

Figure 3. Triangular

It may be found, for one
tions to:

Ji(r) =

Ji (r) =

Ji (r) =

where
RL =

RU =

AR = 1/2

RM = 1/2

distribution for Ji(r).

ion, by transforming the preceding

0 ; r < RL , r > RU

RL < RM

equa-

(15)

(16)

(12(r-RL)

472(RU-r)

; r

; RM r < RU

1/2 AVI

11/2
B 2 ci-

f
Bm

2qi

(RURL)

(RU+RL)

The integral given in Eq. (14) may be evaluated for nine
different cases, depending on the region of Figure 3 subtended by
the exit slit. That is, it depends on which parts of the distri-
bution function are actually involved in the evaluation of the
integral in Eq. (14). If we distinguish four regions, a, 0, y, 6,
as shown in Figure 3, we can classify these cases mathematically
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according to the regions where the edges of the slit fall. Thus,

the upper row of Table 1 specifies whether the rightmost e:lcse of

the slit at r = R0 +S/2 occurs in region a, 0, y, or 6. Sim-
ilarly, the leftmost column specifies the region in which the
leftmost edge of the slit at r = R0 -S /2 occurs, with the obvi-
ous restriction (X's in the Table) that it must occur only to the
left of the other edge of the slit. This makes a total of ten
separate cases in all, two of which are equivalent in that there
is no overlap when the slit is either completely in region a or

completely in region 6. In all cases, except when the distribu-
tion is completely contained by the slit (25), Isi < Ii. Mesas
will be observed for S > 2611.

upper limit ----o- (R0 +S/2)iRLs(R0 +S/2)111.1<(R0+S/2)5RU<(Ro+S/2)
lower limit

5 y 1 6a

a: (110-S /2) .sRL (17)

0: RL<(Ro-S/2)s13141 X
y: RM.1.(Ro-S/2).sRU X
6: RU<(Ro-S/2) X

(23) (25)

(21) (24)

(19) (22)

X (17)

Table 1. Equations (in parentheses) applicable
for each of nine cases of slit distribution overlap.

The appropriate equations are as follows:

'Si = 0 (17)

Isi (IAR)iS2
(110-RI) (18)

Isi (I611)iS (RU-R0) (19)

Isi = - [RL-(Ro+S/2)] 2 (20)

Isi = (1)/{[RU-(Ro+S/2)]2 + [(110-5/2)-RL] 21 (21)

[RU-(110-8/2)]2 (22)
isi 2(AR)2

I;
o+S/2)]2'Si. = -

2(611)2
[RU-(R (23)

/si 2(611)2
[RL-(110-S/2)]2 (24)

'Si = Ii (25)
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The total ion current passing through the slit (Is) is found
as follows:

n
Is = G Isi

1=1

(

thus summing the contribution made by all ions.

The total detector current Id is given by Ea. (17):

Id = Is + In

(26)

(27)

where In is a random noise component. This component will vary
between 0 and Inmax, and the distribution will be uniform. The
curves obtained in the trial runs are shown in Figures 4(a), (b),
(c) and (d) (see pages 117 and 118).

Detailed program specifications for MSSIM are listed below
and on the following pages.

Program Specifications

A. Name

MSSIM - Mass Spectrometer SIMulator

B. Purpose

This program simulates the operation of a mass spectrometer
and generates corresponding output data.

C. System Flow Chart

INSTRUC TOR
PA RA 4ETERS

LTA RT

MSSIM

STUDENT

PA RAMETERS

OUTPUT
DATA

407

LISTING

GRAPH GRAPHICAL

DATA

*I TABULATED
DA TA



D. Control Devices

Control cards as follows:

4 #JOB
44XEQSMSSIM

E. Input Data

Instructor parameters:
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MONITOR B
3 (Col. 28)

Card 1 Columns 1-14
15-28
29-34
35-39

Cards 2 to N+1 Columns 1-14
18

19-32

Student parameters:

Columns 1-14
15-28
29-42
43-56
57-70

See program listing
input data and formats.

Initial KE of ions
Peak detector noise
Number of kinds of ions
4 digit seed for random
number generator
Mass of ion
Degree of ionization
Relative abundance of ion
in percent

Flux density
Exit slit width
Lower limit acceleration voltage
Upper limit acceleration voltage
Accelerating voltage increment

and comments for complete description of

F. Output Data

For each run, the following cards are punched:

1. One control card for GRAPH.
2. One data card for each measurement made in

the run. Each card contains the values of
accelerator voltage and corresponding de-
tector current.

3. Three data cards for GRAPH.

G. Non-Error Messages

1. Message:
Cause:

2. Message:

rAllCs=ff

Response:
3. Message:

MASS SPECTROMETER SIMULATOR TRH.
Identification.
TYPE 5 PARAMETERS USING F OR E FORMATS
BELOW HEADINGS B, S, VL, VU, VINO..
Need student parameters.
Enter parameters.
END OF RUN.
SS1 ON TO RE-ENTER STUDENT PARA,
SS2 ON TO RE-ENTER INST. PARA, OFF TO
EXIT.
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Cause: End of run.
Response: Set switch, push start.

H. Error Messages

1. Message:
Cause:

2. All
not

I. Switch Settings

Parameter outside limits.
A student parameter is outside
allowed limits -
(a) B must equal 0.1500 cr 0.3000
(b) S must be less than 10-2, but
(c) 500 VU > VL z 0
(d) (VU-VL) a VINC

standard Fortran errors are possible but
occur. Re-check input data.

DISK PARITY I/O O'FLOW 1 2 3
v

4

ON *
_

*
,

.

*
A

xf*OFF X X X X * *

*1. See non-error message 3.
*2. See non-error message 3.
*4. Used to correct typing errors.

J. File Used

None.

positive

should
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C MASS SPECTROMETER SIMULATION PROGRAM

C
C TABLE OF VARIABLES
C RO CENTER RADIUS OF EXIT SLIT IN METERS

AS SOURCE BEAM CURRENT IN AMPS.

DV AVERAGE INITIAL KE OF IONS IN ELECTRON VOLTS

ANMAX PEAK DETECTOR NOISE CURRENT IN AMPS.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

N
M
AMU
Q
AMT
B
S
VL
VU
VINC
DI
V
CMR(I)
A(I)
DR
CMU
CML

NUMBER OF DIFFERENT KINDS OF IONS
SEED FOR RANDOM
MASS OF ION IN AMU
ION CHARGE IN ELECTRON UNITS
RELATIVE QUANTITY OF ION
MAGNETIC FLUX DENSITY IN WEBERS/SQ METER
EXIT SLIT WIDTH IN METERS
LOWER ACCELERATING VOLTAGE LIMIT
UPPER ACCELERATING VOLTAGE LIMIT
ACCELERATING VOLTAGE INCREMENT
DETECTOR CURRENT IN AMPS.
ACCELERATING POTENTIAL
CHARGE-TO-MASS-RATIO FOR ION (I) IN

SOURCE CURRENT COMPONENT DUE TO ION

DELTA R
UPPER LIMIT OF CHARGE-MASS RATIO OF
LOWER LIMIT OF CHARGE-MASS RATIO OF

COULOMBS/KG
(I)

IONS HITTING SLIT
IONS HITTING SLIT

DIMENSION A(20),CMR(20),RX(2),K(2)
EQUIVALENCE (RX(1),ROM),(RX(2),ROP)

C FORMAT STMTS FOLLOW -
C ID MSG

900 FORMAT(33HMASS SPECTROMETER SIMULATOR TRH)

C INSTRUCTOR PARAMETER CARD
901 FORMAT(2E14.7,2I5)

C ION DESCRIPTOR CARD
902 FORMAT(E14.7,3X,F1.0,E14.7)

C STUDENT INPUT MSG
903 FORMAT(53HTYPE 5 PARAMETERS USING F OR E FORMATS BELOW HEADINGS/70

1H( VL VU ) (-- - -VINC

2----) )

C STUDENT PARAMETERS
904 FORMAT(5E14.7)

C ERROR MSG
905 FORMAT(24HPARAMETER OUTSIDE LIMITS)

C OUTPUT CARD
906 FORMAT(2E14.7)

C TERMINAL MSG
907 FORMAT(10HEND OF RUN/74HSS1 ON TO RE-ENTER STUDENT PARA, SS2 ON TO

1 RE-ENTER INST. PARA, OFF TO EXIT)

C GRAPH CONTROL CARD
908 FORMAT (16H 1 1 10. 8. 1 4)

C GRAPH EOD CARDS
909 FORAMT(6H-9999./18H ACCELERATOR VOLTS/17H DETECTOR AMPS.)

C
C INITIALIZING SECTION
C SET MODEL PARAMETERS
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C
TYPE 900
RO= 4.0E-02
BO= 1.5E-01
AS= 5.0E-09

C
C READ INSTRUCTOR PARAMETERS
C

1 READ 901,DV,ANMAX,N,M
AT=0.
DO 2 I=1,N
READ 902 , AMU , Q ,AMT

CMR(I)= ((1.609E-19)*Q)/(AMU*1.65979E-27)
A(I)=Q*AMT

2 AT=AT+A(I)
DO 3 I=1IN

3 A(I)=(A(I)*AS) /AT
C
C READ STUDENT PARAMETERS
C

4 TYPE 903
ACCEPT 904,B,S,VL,VU,VINC
IF(B-B0)5,7,5

5 IF(B-BO-B0)13,7,13
7 IF(S)13,13,8
8 IF(S-1.E-02)9,13,13
9 IF(VU-VL)13,13,10
10 IF(VL)13,11,11
11 IF(VU-500.)12,12,13
12 IF((VU-VL)-VINC)13,14,14
13 TYPE 905

GO TO 4
14 ROP=RO+S/2.

ROM=RO-S/2.
V=VL

C
C PUNCH GRAPH CONTROL CARD

PUNCH 908
C
C MAIN PGM LOOP TO CALCULATE DI FOR EACH VALUE OF V
C

15 DI=0
CML=(2.*V)/(ROP*B)**2
CMU=(2.*(V+2.*DV))/(ROM*B)**2

C CHECK EACH ION TO SEE IF IT CONTRIBUTES TO DI
DO 50 I=1,N
IF(CMR(I)-CMU)17,17,50

17 IF(CMR(I)-CML)50,18,18
C PROCESS ION IF IT CONTRIBUTES TO DI

18 RL=SQRT((2.*V)/(B*B*CMR(I)))
RU=RL*(1.+DV/V)
DR=(RU-RL)/2.
RM=(RU+RL)/2.
F=A(I)/(2.*DR*DR)
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C DETERMINE WHICH EQUATION TO USE
DO 30 J=1,2
K(J)=0
IF(RX(J)-RL)30130,21

21 IF(RX(J)-RM)22,22,23
22 K(J)=1

GO TO 30
23 IF(RX(J)-RU)24,24,25
24 K(J)=2

GO TO 30
25 K(J)=3
30 CONTINUE

J=1 +K(1)+4*K(2)
GO TO (50,50,50,50,110,108,50,50,113,111,109,50,115,114,112,50),J

C FOLLOWING EQUATIONS CALCULATE CONTRIBUTION OF ION (I) TO DETECTOR CURRENT
108 C= F*2.*(RO-RIJ)*S

GO TO 31
109 C= F*2.*(RU-R0)*S

GO TO 31
110 C=F*(R1,- ROP )**2

GO TO 31
111 C=A(I)-F*((RU-ROP)**2+(ROM-RL)**2)

GO TO 31
112 C= F*(RU- ROM )**2

GO TO 31
113 C= A(I)-F*(RU- ROP )**2

GO TO 31
114 C= A(I)-F*(RL- ROM )**2

GO TO 31
115 C=A(I)
31 DI=DI+C
50 CONTINUE

CALL RANDOM(R,M)
DI=DI+R*ANMAX
PUNCH 906,V,DI
V=V+VINC
IF(V-VU)15,15,60

C
C END OF RUN ROUTINE
C

60 TYPE 907
C PUNCH EOD GRAPH CARDS

PUNCH 909
PAUSE
IF(SENSE SWITCH 1)4,61

61 IF(SENSE SWITCH 2)1,62
62 CALL EXIT

END
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INTRODUCTION

The material presented here has been taught to an audience
of biology, earth science, chemistry and mathematics majors in an
introductory, noncalculus, service course in general physics. It
was also presented, in preliminary form, during the summer session
of 1968. At present, we are engaged in an extensive revision in
approach and content, and we have not yet chosen an appropriate
accompanying text.*

Roughly, the course will stress a discussion of the state of
a system in general terms; conservation laws in terms of those
parameters of the description of a system which are constant, and
the interaction laws, in terms of those properties of a system
which change. Emphasis is placed on constructing models which
simulate the behavior of the actual physical system. The computer
was introduced into this course for two reasons: a) many of these
people will not otherwise be exposed to computers; b) we can use
the computer as an aid in constructing and studying models. The
lab in this course is a three-hour lab, of which one hour is a
problem session.

We have not made any attempt to explain the programs them-
selves to the students, since one essential aspect of the technique
is that the computer output be well-formatted and self-explanatory.
It is also necessary, for batch processing, to trap out as many in-
valid or erroneous input parameters as possible--with 150 students
any conceivable combination of invalid data is likely to occur.
These factors add considerable complications to the essential pro-
gram, and would make it quite difficult for students to follow.

We found no opposition to the "black-box" technique--a little
too much faith, in fact--and plan, in the future, to introduce a
lab in which we will look more closely at programming and the "Gar-
bage In--Garbage Out" effect.

The problem illustrated in this paper originated in an experi-
ment to measure the decay of radioactive silver produced in a neu-
tron howitzer. The logistics of retrieving and distributing the
computer output makes a division of the material into three lab
periods a more workable arrangement, as explained in the Teacher's
Guide.

A third simulation program is included in the package, al-
though we did not incorporate it into the summer session course.
This program simulates the buildup to saturation of a source where

*Basic Physics, K. W. Ford, Blaisdel (1968) is used as a ref-
erence text.
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the production is at a constant rate. We have discussed the advis-
ability of including a simulation of the two distinct half-lives
that are present in the actual source. However, the shorter one is
rather difficult to measure experimentally, except as an excess of
counts at early times.

Based on experience with the summer school class, the experi-
mental writeups have been extensively rewritten in the interests of
clarity and fuller explanation. We are greatly pleased with the
results and have incorporated them into the new course at an early
stage--preceded only by the PSSC "analysis of an experiment" lab.
In fact, these simulation programs could be used in a nore advanced
course with appropriate modifications of the lab writeups. Advanced
students might investigate such things as the effect of the "quan-
tized" throws versus the continuous decay, and could use the neutron
capture cross sections to develop a Monte Carlo calculation of the
activity buildup.

A word about philosophy for the General physics course. A
computer is a Black Box to these students, and will probably always
be so for the majority. The aim is to convert a mysterious, omni-
potent Black Box into a useful Black Box. We have kept the calcula-
tions conceptually simple and, in each case, have required the stu-
dent to perform the same operations on a small sample as will be
done on larger samples by the computer. The programs themselves are
complicated, for reasons explained above; but we believe that
in order to get clear and comprehensible outputs it is better to
accept a complex program which students will not understand, than
to write simple but inadequate programs (which most students still
will not understand). At some point in the course -- either in the
lecture or 14)oratorywe will try to remove some of the mystery
about prograwaing.

The following section, entitled "Student Manual," presents ma-
terial which was distributed to students participating in the two
experiments. It is here reproduced in a slightly condensed version.

We would like to acknowledge the cooperation of Dr. Rex Adel-
berger, who has been teaching the General Physics course this summer.



STUDENT MANUAL

Randomness and Radioactive Decay I

As we have frequently done, we will be trying to invent a mod-
el of a physical system that satisfactorily displays some of the
properties of the real system. The process we will study is "radio-

active decay".

1. Set up the Geiger counter (see instruction sheet) and
pick the measuring time and distance from the weak
source so that you get about two or three counts in an
interval. Take a series of 100 "runs" and record the
number of counts obtained in each. Plot a histogram
of the number of runs with 0 counts, 1 count, 2 counts,

etc. Calculate the average number of counts/run.

2. 72xamine the first half of your series of runs and see
if you can detect any pattern in the number of counts/
run. If you see a pattern, cover the lower half of
the list and try to predict successive numbers on the
basis of the preceding ones.

Do you feel that you were any more successful than you
would have been if you had just guessed?

3. Compare the average number of counts/run from the last
half of your -eries to that from the first half. To
what extent is the behavior of this system patternless?

The model we have of radioactive decay is roughly as follows:

The "source" consists of a large number cf discrete nuclei;
each of these nuclei is in a particular nuclear state. There is
another nuclear state to which the nucleus can make a transition,
and still satisfy all of the conservation rules. For most radioac-
tive transitions, these two states correspond to nuclei of different

chemical elements. Conservation of Mass-Energy decrees that the

second state have a lower total Mass-Energy than the first; the ex-
cess Mass-Energy is necessary to trip the detector. Actually, we

should take this fact into account, since it implies that a nucleus

can undergo the transition only once. We will return to this point

in a later experiment.

One of the most fundamental features of our model of the nu-
clear particles is that all e;'amples of a particular nuclear state
are identical and indistinguishable. This follows from our defini-
tion of "state", since two systems in the same state are, by defin-

ition, indistinguishable. Now, if two systems are truly identical,
at first thought it would seem that the past and future histories
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of these systems must also be identical. That is, if we create a
number of identical nuclear states (or any other type of state) and
if one of them undergoes a spontaneous transition at some time,
then they should all do it at the same time (or else they are not
identical). However, the source that you have measured was "manu-
factured" in a nuclear reactor during a relatively short period of
time. During this time, all of the nuclear systems were forced in-
to their excited states; yet transitions, as you have observed to-
day, continue to occur at different tines after production.

This raises the possibility that the nuclei are not all iden-
tical, but that each contains a "clock," set to go off at different
times. If this were the case, it might be possible to physically
separate those with short decay times from those with longer times.
This has not proved possible, nor is there any evidence that the
transition process is different in any respect for early or late
decays.

There is, however, one possibility which supports the idea of
identical nuclear states. Let us imagine that the transition time
of each nucleus is determined, not by a preset clock, but purely by
chance, and that the probability of each nucleus undergoing transi-
tion in a given period of time is identical to that of each other
nucleus.

An analogy immediately comes to mind--a batch of identical
pennies. If we dump them on the floor, they each have a 5C-50
chance of landing "heads". The probability, we would say, is 1/2.
A batch of identical dice would each have a 1/6 probability of
showing, say a "5" on the upper face. Speaking figuratively, of
course, let us give each nucleus a die which it will toss at the
start of each time interval to decide whether or not to make a tran-
sition.
ing, if
that it
ces are

The details of how the nucleus "decides" are not interest-
in fact that is even a valid question to ask. The point is
"decides" purely on the basis of chance, and that the chan-
the same for each nucleus in the source.

For the moment, let us talk only about the probabilities, in
terms of throwing dice. We will imagine, then, each nucleus throw-
ing a die at the start of each counting interval. Each die has one
side on it which we call "heads"; the other sides are all "tails".
Let us also assume that the average number of decays you observed
was three. Suppose there were six nuclei throwing six-sided dice;
then we would expect one head, on the average, since the probable
outcome of 1/6 x 6 = 1. We would get three heads, on the average,
from 18 nuclei throwing six-sided dice (1/6 x 18 = 3); or 15 nuclei
throwing five-sided dice (1/5 x 15 = 3); or 3 x 1023 nuclei throw-
ing 1 x 1023-sided dice (1/1023 x 3 x 1023 = 3). We see that if
there are enough nuclei, the chances for any given nucleus can be
pretty small and still give a reasonable number of transitions.

4. Let us test the hypothesis by doing a dice-throwing
experiment. Since our dice have six sides, select a
number of dice which will give the same average num
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ber of "heads" as the counts you obtained with the
counter. Throw your batch of dice a number of times
and make a histogram of the number of times 0 heads,
1 head, 2 heads, etc. show unt just as you did with
the radioactive source. Do these two sets of numbers
behave the same way? Can you predict any particular
number of heads? Can you predict the average?

5. Repeat the experiment with pennies, again chosen to
give the same average (any problems?). Compare the
two histograms.

At this point, we must recognize a deficiency in our model.
We are using, say 18 six-sided dice to get an average of three, but
our source is using more like (3 x 1023) 1023-sided dice to get the
same average. The problem is, we will never get 20 heads (with on-
ly 18 dice), but it is certainly not out of the question if you have
3 x 1023 dice. To compare results we need to use more dice than we
can conveniently handle.

To help with this problem the 1130 computer has been programmed
to simulate the throwing of a large number of dice, each with N
number of sides. It will also plot out a histogram showing the ac-
tual number of times heads comes up as well as the most likely num-
ber of times, based on a mathematical analysis of the probabilities.

6. Pick a number of dice (around 100) and a number of
sides which will give you the average value you mea-
sured. For example, if you wanted an average of
2.5, 40 sides would be correct: 100 x 1/40 = 2.5.
Ask the computer to throw this set of dice the same
number of times as you made counting runs. Plot
your data, and the computer's data on the same
graph. From a comparison of the graphs, would you
say that the dice-throwing model gives an accurate
reproduction of the actual physical situation?

Comments on Random Numbers

Although a computer cannot actually roll dim-, it can be pro-
grammed to produce patternless, or random, sequences of numbers, one
through six, for example, that simulate the random way in which the
numbers would appear on successive throws of a die. Not that it
will duplicate the string of numbers, of course, but the sequence
produced by the computer and by a real die have the following common
characteristics: a) the next number in the sequence cannot be
guessed from the preceding one more often than 1/6 of the time (on
the average); b) in a long sequence each of the six different num-
bers will appear about 1/6 of the time. The major difference be-
tween the two random processes is that if one starts the computer
over again, it will give the same sequence as before. However, the
number N in your data will enable you to start the computer off
at a different place each time, thereby avoiding repetition of th6
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previous sequence.

Roughly speaking, the method of generating random numbers in

the computer consists of multiplying N by another number Z and

retaining only the rightmost (low-order) half of the digits in the

product as a new number N'. N' is then multiplied by Z to gen-

erate a new number N" in the same way. Thus, if N = 13 and Z =

123, then NZ = 1599 and N' = 99; similarly, N" = 77. (Although

the example we have chosen only yields odd two-digit numbers, the

actual program in the computer is more sophisticated, yielding both

odd and even numbers.)

Program Notes

The 1130 computer programs for the sequence of labs on radio-

active decay are as follows.

DITHR This program simulates the throwing of a batch of N-

sidedaICg any given number of times. The output from DITHR is

largely self-explanatory. The graph is expanded to use all of the

space available. The scale factor is printed on the sheet. If a

scale factor of 3.00 were computed, three asterisks would corre-

spond to one occurrence. You can replot the results to any scale by

using the numbers at the right of the page. The numbers labeled as

"theoretical" are what you would expect from the average of a very

large number of throws. To operate this program, punch the follow-

ing data cards (FREE STYLE):*

1. A title card (your name, date, etc. -- whatever you like).

This card will be reproduced on the printed output to

let you identify your results.

2. A card, or cards, containing the following numbers in

this sequence:

NDICE The number of dice in the batch.

NSIDE The number of sides on each die.

NTHROW The number of times the batch of dice is to be

thrown.
N A starter for the generator of random numbers- -

a positive, odd integer less than 30,000. You

should invent your own number N.

9999

For a simple case of NDICE = 100, NSIDE = 25, and NTHROW =

100, the output appears in Figure 1 on the following page.

*See notes on punching data cards further in the text.
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Notes on Punching Cards

Data to be read by a computer usually has to satisfy rigid
requirements about columns, spaces, etc. However, data for student

programs can be entered in a much more liberal fashion. This is

true of those programs where data is indicated as being FREE STYLE.

For such programs, the order in which your numbers ADpear is

important. Any given number must be entered with all digits punched

together and no spaces, commas, or any other characters between dig-

its. The one exception to this is that a decimal point will be hon-

ored if it is punched. You may not use column 80; you may not split

a number between two cards. Use only eight digits per number.

As Punched As Interpreted

95

- .95

95.

- 0.95

123,456.7 123 456.7 (2 numbers)

123456789.12 ?? (more than 8 digits)

X = 15, Y = 3 15 3

9999 0

The last item on your cards should be the number 9999. This sig-

nifies no further data in this batch. (On occasion, the data for a

single program may consist of more than one batch.) The number

9999 should always appear on the same card as your last data item,

except when you are explicitly directed otherwise.

If you make an error in punching: back up and punch XXXX over

the entire wrong entry--including sign and decimal point. Space on

to a clean part of the card and punch it correctly.

If you need to use a big number: a form of scientific nota-

tion is allowed; the number 3.4192 x 108 would be punched 3.4192E+08

and the number -6.62 x 10-23 would be punched - 6.62E-23. Consult

your instructor (or instruction sheets) before using this feature.

Radioactive Decay II

In the last laboratory we investigated a possible model of a

radioactive source. This model assumed the source to be a large

number of identical nuclear states, each with an identical probabil-

ity of undergoing a transition in any interval of time. For each

system in our sample, the occurrence of a transition was determined

purely by chance; the mechanism for making this decision was not

considered. We compared the behavior of the source with the behav-

ior of a set of dice so constructed that the average number of

"heads" agreed with the average number of counts from our source.

In making this comparison we explicitly neglected one factor--
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that a nuclear state can only undergo this transition once. We
can make this conclusion on the grounds of conservation of Mass-
Energy, since the "triggering" of the detector by the transition
must require some energy. Thus, one characteristic of the two
states of the system must be that the second state has a lower
Mass-Energy than the first. (This is always true of any transi-
tion that occurs spontaneously.)

A nuclear system which has undergone a transition is now in
a different state and can no longer be counted among those systems
which have a probability of undergoing a transition. It is, of
course, possible that this new state will itself be unstable, hav-
ing some probability--maybe very different--of changing to a third
state, which in turn may change to a fourth state, and so on, thus
forming a radioactive series. We will only consider the case where
the second state is stable.

Our dice-throwing model needs only a minor modification to
take this one-shot transition factor into account. Namely, when-
ever a die comes up "heads"--corresponding to a transition--we
remove it from the sample. It is obvious that the number of dice
in our sample must get progressively smaller, and that as the sam-
ple gets smaller, the number coming up "heads" will also get smal-
ler.

Question: What does the number of counts on the Geiger counter
correspond to--the number in the sample, or the number that come
up heads?

1. Try experiment with a batch of coins, tossing them
repeatedly and removing at each toss those that come
up heads. Plot a graph of the number in the sample
before each throw and of the number coming up heads vs
the number of throws. On the same graph, plot what
would have happened if exactly half had come up heads
at each toss. Did you run into any problems making
this last plot? If so, what did you decide was meant
by "half a head"? Did you get a straight line graph?

The reason you did not observe this sort of steady decrease
in the counting rate in the last lab was that the probability of
transition was low and the number of nuclei was large. While re-
moving three from a sample of 102 3 alters very little, taking three
from a sample of six makes a big difference.

Our task now is to find a way of making a meaningful compari-
son between the data derived from our model and that which you will
get rrom the actual radioactive sample. It is important to realize
that we will not detect all of the transitions in our source, but
only some fraction of them, determined by the size of our detector,
its distance from the source, etc. Thus, all of our measurements
are relative, and we cannot learn the actual number of nuclei or
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transitions in any interval. This should not bother us; we can
imagine our dice-throwing experiment in the same way--as if the
number of dice we started with was some unknown fraction of the
total. Presumably, the part of the sample that we did not see
would decay at the same fractional rate as the part we observed;
i.e., 1/5 gone in time t, 1/2 in time t', etc. Thus, our com-
parison cannot be based on the absolute values of the data, but
must test their relative behavior. That is, if we plot heads (or
counts) versus time, the vertical scale of our graph is not im-
portant.

Another problem in the comparison is the horizontal scale of
the graph--there is no reason why one throw of the coins or dice
(whose probability of a transition we chose quite arbitrarily)
should correspond to 10 seconds of time for the actual radioactive
source. In other words, the time (horizontal) axis of our graph
also has an arbitrary scale. Our comparison must be independent
of the scale of our graph along either axis; the "shape", the
fractional change in the height of the graph with time, is more
important than "size".

Question: What happens to a straight line graph if you change the
scale of the axes? Does the data look like some power of the time?
(Inverse power?) This, you will recall, can be tested by plotting
log (data) versus log (time) and seeing if a straight line results.

Try plotting log (data) versus time and see what happens. If one
of these graphs gives a straight line, does it still do so if you
change the scale of the axes?

2. Repeat your experiment with a batch of dice. Plot
your results on the same graph that gave a straight
line--compare the graphs.

The 1130 computer has again been programmed to throw
a set of dice, and to remove all of those coming up
heads for the next throw. Decide on a number of
dice in your sample and on the number of sides each
is to have. Punch up the control cards as instruc-
ted. (See Program Notes, EXPSM.) Plot the data vs
the number of throws. Also plot the number as cal-
culated if 1/(no. of sides) of the dice were removed
each time.

If we are to observe this experimentally, we shall have to
create our own radioactive source. This is reasonable since, if
the probability of transition is to be high enough so that an ap-
preciable fraction of the nuclei undergo transitions during a
laboratory period, there would be no possibility of keeping such
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a source from year to year (or even for the entire week). The
radioactive source we will use is an isotope of silver, which we
will produce from normal silver by bombardment with neutrons in a
neutron "howitzer". This radioactive isotope will be too "hot"
for you to count the transitions individually, but we can use the
"count rate meter" to measure the rate at which the transitions
are occurring.

3. Take a "hot" quarter and set it at such a distance
from the detector that the rate meter needle is
nearly at the top of its scale. Record the reading
of the meter at 10-second intervals until the read-
ing is too small to observe accurately.

We now have two sets of data: that from the "dice"
and that from the radioactive source. Compare your
data to that which the computer generated, using
our model, by plotting them on the same graph. Do
you consider the model to be a good one?

If you consider this to be a good model of the ra-
dioactive source, then approximately to what time
interval does one throw of your dice correspond?

EXPSM

This program simulates the throwing of a batch of dice, remov-
ing at each throw those which come up "heads" (chosen to be side N
for N-sided dice). The output from EXPSM, as shown, is largely
self-explanatory. The number of surviving dice is printed down the
page, and, staggered between them, is the number that have been re-
moved (if we do not print every throw, then the total removed since
the last throw printed is given). This is labeled with the number
of the throw. The theoretical values are obtained by removing ex-
actly 1/NSIDES of the dice on each throw. This accounts for the
fractional values. The program will stop calculating when all of
the actual dice have been removed, hence, NTHROW is unnecessary. To
operate this program, punch the following data cards (FREE STYLE):

1. A title card (your name, date, etc.); this will appear
on your printed sheet.

2. A care, or cards, containing the following numbers in

this sequence:

NDICE The number of
NSIDE The number of
N A starter for

positive, odd
9999

dice originally present.
sides on each die.
the random number sequence--a
integer less than 30,000.

OPTION: You may, if you wish, insert one more number--NCYCL--
after N and before 9999. 'This number tells the computer how
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often to print your results. If NCYCL is 3, for example, the re-
sults after every three throws will be printed. This will result
in a quicker execution of the program.

For a sample case of NDICE = 100, NSIDE = 25t and NCYCL = 3,

the output is given in Figure 2, on the following page.
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TEACHER'S GUIDE

Logistics

The Computer Center on the Geneseo campus of the State Univer-
sity of New York has an IBM 1130 computer, which operates on a com-
pletely open-shop basis. The general physics course in which this
pair of laboratory experiments was used has about 140 students in
six sections. In our first experimentation with these laboratories,
we made an attempt to get the computer output back to the students
during the lab period by having a messenger pick up punched cards,
take them to the computer, pr'cess them and bring back the printed
output. This procedure did not prove successful and experience in-
dicates that one cannot count on the computer's availability during
all sessions. For this reason, this experiment package, although
it constitutes two experiments, was actually distributed over three

laboratory periods.

During the first period, students took the data on the back-
ground radiation with the Geiger counters, ran the simulation ex-
periment with either dice or the pennies, and punched the cards to
generate the computer data. Since we were dealing with complete
novices in the art of computing, we examined all data cards for
validity. Four manual card punches were used in the laboratory, a
number which proved to be quite adequate for the 24 students in

each section. These punches are sufficiently simple in operation
and the FREE STYLE program (discussed elsewhere in this monograph
by Paul Smith of Coe College) was so undemanding of the students,
that almost no additional instruction on card punching proved nec-
essary, other than that which is provided in the Student Manual.
At the conclusion of the laboratory, the data cards were picked up
and processed in a batch. Students retrieved their output at their
convenience.

Comments and Cautions

It is quite important that the counting rate and the counting
time for the Geiger counters be adjusted so that the number of
counts is on the order of two or three per interval. This will re-
sult in a sufficiently skewed distribution so that valid compari-
sons may be made between the simulation data and the actual data.
The instructor should resist the temptation to reduce the number of
counting runs from 100. If the number of runs is substantially
smaller than this; the statistics of the small numbers will result
in distributions which are rather far from typical, making the com-

parisons unconvincing. In practice, the recording of the Geiger
counter data did not prove to be a time-consuming task. Students
encountered some difficulty in setting up the Geiger counter proper-
ly, and it proved advisable to have the voltages preset by the lab

139
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instructor. Although it does introduce an element of black box
technology, the point of the lab was not the theory and operation
of a Geiger counter, but rather that of a mathematical model of a
physical situation.

Laboratory Period 2

The first part of this period was spent in completing the
dice-tossing or coin-throwing and in discussing the compar'sons of

the various sets of data. At this point, we conducted a rather
careful discussion of what was meant by the theoretical data. In
the second part of this laboratory period, the students performed
the simulation parts of the exponential decay in experiment number
II. At the conclusion of this period, they punched the cards for
the second computer simulation. Since our computation center oper-
ates on an open-shop basis, we decided to have the students run
their own programs so that they could see the equipment actually
operate and watch the output emerae. To facilitate this, the pro-
gram EXPSM was stored on the 1130 disk in a core image format to
minimize the loading time. We also provided a batch of prepunched
JOB and XEQ cards, and the Computer Center made available a brief
set of operating instructions. The experiment of having 140 nov-
ices operate their computer programs during a one-week period
proved to be remarkably successful, although somewhat trying for
the Computer Center personnel. If anyone is tempted to repeat
this, we strongly urge that a large wall chart be posted, contain-
ing operating instructions for the computer and, most importantly,
what not to do. This will minimize, though not eliminate, the
reloaarig of the disk. The cards could, of course, be run off in
a batch as was done for the first experiment. However, student
response to doing it themselves is so favorable that we strongly
suggest it be tried if local conditions permit.

Laboratory Period 3

During this period the students took the actual data for the
decay of the radioactive silver produced in the neutron howitzer.
Also, some discussion of the graphing and the comparison of the
data proved to be advisable during this laboratory period.

General Comments

Throughout the three periods we took considerable pains to em-
phasize that the point of the experiment was the comparison of the
model with the experimental situation, and to prevent the techno-
logy involved from obscuring this point. A calculated risk was ta-
ken in introducing, at the very start of the course, an experiment
with this degree of sophistication. The major problem encountered
related to the inexperience of the students in graphing and inter-
preting experimental data. Eventually, an additional lab involving
data-handling will precede this package. Student response was gen-
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erally favorable, but the instructor must take care to see that the
objectives of the experiment do not become obscured.

Random Number Generation on the 1130 Computer--Subroutine Dice

The subroutine RANDU, in the IBM supplied Scientific Subroutine
Package, generates "random" numbers by repeated multiplication, re-
taining the low order part of the product. The integers are reason-

ably w211 distributed, if one ignores the fact that they are all odd

and that the repetition cycle of the nth bit is 211-2.

For simulation and Monte Carlo purposes, one would frequently

like a random integer between 1 and N, where N is small. This

can be accomplished by taking a random number "modulo N" (or divid-

ing by N and adding 1 to the remainder). The routine RANDU is ill

suited to this purpose because of the poor cycle of the bits that

are retained by this process.

Subroutine DICE(NSIDES,IUP,N) generates such a random integer
between 1 and NSIDES, returning the value in IUP. N is the starter

for the random number sequence and should be an odd, positive inte-

ger. This subroutine circumvents the difficulties of RANDU by gen-
erating a new "random" number N and then reversing the 15 sig-

nificant bits before dividing by NSIDES. The small integers thus
produced have the best possible cycle. Protection is also provided

against the logically difficult situation of a call with NSIDES < 0.

The name of the program is suggested by the throwing of an N-sided

die. Because of the extensive bit manipulation the program is writ-

ten in Assembler language. It would be possible to write it in For-
tran; however; conversion to a different machine should not be at-

tempted, since the particular routine is hardware dependent.

If a user had a need for a more extensive string of random

numbers greater than 213 (8192) the routine could be revised to

treat the multiplier 899 as a variable. (This number is one of a

family 8t ± 3.)

Two auxiliary subroutines IDICE and HDICE are useful in simula-

tion routines. IDICE (NUP,NDICE,NSIDES,N) where NUP is Dimensioned
NUP(NSIDES) returns the number of times each side was up in a single

throw of NDICE. HDICE(NHDS,NDICE,NSIDES,N) returns the number of

"heads" in a set of NDICE, where the side called "heads" is deter-

mined by a first call of DICE.

Listed on the following pages are the source and subroutine

programs for the experiments.
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// JOB
// DUP
*DELETE DITHR
// FOR
*ONE WORD INTEGERS
*LIST SOURCE PROGRAM
*IOCS(CARD, 1132PRINTER)
C PROGRAM DITHR
C WRITTEN BY J KENYON. SUPERVISED BY K KINSEY, SUNY,GENESEO

INTEGER BLANK,STAR,DOT,X,DASH ,0
DIMENSION ICNT(500),T(4),ILINE(120),LINEA(96),LINET(96), IHEAD (40)

DATA BLANK, STAR, DOT, DASH, 0/' 1,'*111.111-11'0'/
COEF(NDICE,IK,P)=2.71828**(FCTLN(NDICE)-FCTLN(NDICE-IK)-FCTLN(IK))
X*(P**(IK))*((1-P)**(NDICE-IK))

3 READ(2,5) IHEAD
2100 CALL FREE(T14)

PVAL=0.
C NDICE IS THE NUMBER OF DICE BEING THROWN

NDICE =T (1)

C NSIDE IS THE NUMBER OF FACES ON THE DIE
NSIDE=T(2)

C NTHRW IS THE NUMBER OF TIMES NDICE ARE THROWN
NTHRW=T(3)

C N IS A STARTER IN THE RANDOM GENERATION OF NUMBERS
N=T(4)

C N MUST BE AN ODD INTEGER
IN=N

C CHECK THE VALIDITY OF THE DATA
C IF NSIDE=0, READ IN NEW SET OF DATA
C IF NSIDE=1, SET VALUES AND CONTINUE
C IF NSIDE IS GREATER THAN 1, CONTINUE AND CALCULATE VALUES

IF (NSIDE -1) 2200,2300,2400
2200 GO TO 3
2300 JK=NSIDE

II=NSIDE
SCAL=96./NSIDE
IVAL=1
VAL=1.0
IX=96
DO 2307 1=1,96

2307 LINET(I)=BLANK
DO 2301 I=1,IX

2301 LINEA(I)=STAR
LINET (IX) =0
ISW=1
GO TO 739

2302 WRITE(3,2202) JKIDOTILINEA,IVAL, VAL
WRITE(3,2205) LINET
DO 2303 1=1,96
LINET(I)=BLANK

2303 LINEA(I)=BLANK
GO TO 803

2400 ISW=2
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KKK=0
P=1.0/NSIDE

C II IS THE SIDE UP WHICH WE ARE COUNTING ON EACH THROW
II=NSIDE
DO 1000 I=1,NDICE

1000 ICNT(I)=0
C ICNT IS THE NUMBER OF TIMES II COMES UP ON A PARTICULAR THROW

DO 40 K=1,NTHRW
ISUM1=0
CALL HDICE (ISUMI,NDICE,NSIDE,N)
J=ISUMI

C ADD UP NUMBER OF TIMES EACH SIDE COMES UP HEADS
J=J&1

40 ICNT (J) =ICNT (J) &1

C THIS DO LOOP FINDS THE LARGEST VALUE OF ICNT(ISUM)

DO 2001 ISUM=1,NDICE
IF (KKK- ICNT(ISUM)) 2000,2001,2001

2000 KKK=ICNT(ISUM)
2001 CONTINUE
C SET A SCALE FACTOR PACT

FACT=96./KKK
S=0.0
IP=0
BIG=0.
DO 930 IK=1,NDICE
TEST=COEF(NDICE,IK,P)
IF (TEST-BIG) 933,931,931

931 BIG=TEST
930 CONTINUE
933 SCAL=96./(BIG*NTHRW)
C FIND THE SMALLER SCALE FACTOR

IF(SCAL -FACT) 151,151,152
152 SCAL= FACT
151 CONTINUE
C MAKE THE SCALE FACTOR AN INTEGER IF IT IS GREATER THAN 1

IF(SCAL -1.) 739,739,154
154 SCAL=IFIX(SCAL)
C WRITE DATA AND HEADER
739 WRITE(3,740) NDICE,NSIDE,NTHRW

WRITE(3,500) SCAL
WRITE (3, 3555) IN
DO 801 1=1,120

801 ILINE(I)=DASH
WRITE(3,802) ILINE
WRITE(3,750)
WRITE(3,6) IHEAD
WRITE (3, 703)
WRITE(3,700)
WRITE(3,701)
GO TO (2302,704),ISW

704 DO 150 ISUM=1,NDICE
X=ICNT(ISUM)*SCAL
JJ=ISUM-1

C CHECK TO SEE THAT THERE ARE NO NEGATIVE VALUES
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IF (X) 900,910,210
900 WRITE (3,901)

GO TO 2100
910 DO 250 1=1,96
250 LINEA(I)=BLANK

GO TO 102
C WRITE STARS UP TO AND INCLUDING THE SCALED VALUE OF X
210 DO 200 1=1,96
200 LINEA(I)=BLANK

DO 101 I=1,X
101 LINEAJI)=STAR
102 CONTINUE

S=COEF(NDICE,JJ,P)
VALUE=S *NTHRW
IP=VALUE* SCAL
DO 805 IK=1,96

805 LINET(IK)=BLANK
LINET(IP)=0
WRITE(3,160) JJ,DOT,LINEA,ICNT(ISUM)
WRITE(3,161) LINET,VALUE

C CHECK TO SEE IF THEORETICAL VALUES ARE DECREASING
IF (VALUE-PVAL) 1111,149,149

1111 CONTINUE
C STOP PRINTING AFTER VALUES DROP BELOW 0.01

IF (VALUE-0.01) 3000,149,149
149 PVAL=VALUE
150 CONTINUE
3000 DO 803 1=1,120
803 ILINE(I)=DASH

WRITE(3,802) ILINE
GO TO 3

5 FORMAT(4GA2)
6 FORMAT(' T38,4GA2/)
160 FORMAT(101 14,2X,A1,96A1,15)
161 FORMAT(11-17X,96A1,8X,F9.3)
802 FORMAT(' 120A1/)
500 FORMAT (' A SCALE FACTOR OF'F5.2' IS COMPUTED'//)
700 FORMAT(' NUMBER OF TIMES A SIDE')
701 FORMAT(' APPEARS IN ONE THROW',76X,'ACTUAL',3X,'THEORETICAL')
703 FORMAT(" 98X,'FREQUENCY OF OCCURRENCE')
740 FORMAT(111,1A SET OF',IS,' DICE,EACH DIE HAVING',IS,' SIDES WAS

X THROWN',I5,' TIMES'//)
750 FORMAT(10141X'HISTOGRAM OF FREQUENCY DISTRIBUTIONS' /)
901 FORMAT(' ERROR. NEGATIVE NUMBER CALCULATED. CALL EXIT.')
2202 FORMAT(10114,2X,A1,96A1,15,F9.3)
2205 FORMAT(' &'7X,96A1)
3555 FORMAT(' N =' I5 //)

CALL EXIT
END
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C PROGRAM EXPSM A PROGRAM TO SIMULATE AN EXPONENTIAL DECAY.
REAL NOTDK, NOTDC
DIMENSION THEDC(41),THEDK( 41 ),IHEAD(40),LINE(120),
XX(4),KDICE(41),IDK(41)
DATA IDASH/'-'/

1000 READ(2,324) IHEAD
NV=4
CALL FREE(X,NV)

C NDICE IS THE NUMBER OF DICE TO BE THROWN
NDICE=X(1)

C NSIDE IS THE NUMBER OF SIDES ON EACH DIE
NSIDE=X(2)

C N IS A STARTER FOR THE RANDOM GENERATION OF NUMBERS
N=X(3)

C NCYCL (OPTIONAL INPUT) IS THE NUNBER OF INTERVALS CALCULATED FOR
C EACH PRINT

NCYCL=X(4)
C CHECK VALIDITY OF NCYCL

IF (NV-3) 8,8,9
8 NCYCL=1
9 IF (NCYCL) 5,5,6
5 NCYCL=1
6 FACT=1.0/NSIDE
C CHECK VALIDITY OF NSIDE

IF(1000-NSIDE) 861,860,860
861 WRITE (3,863) IHEAD

WRITE (3, 862)NSIDE,NDICE,N,NCYCL
GO TO 1000

860 THEDK(1)=0.0
IDK(1)=0
KIK=40

C SET INITIAL VALUES
THEDC (1) =NDICE
ISW=1
KDICE (1) =NDICE
N=X(3)
KK=0
NOTDC=NDICE
NOWDC=NDICE
LPG=1

C PRINT HEADER
WRITE(3F320) LPG
WRITE(3,450) NDICE,NSIDE
WRITE(3,460) N ,NCYCL
DO 10 1=1,120

10 LINE(I)=IDASH
WRITE (3,321) LINE
WRITE(3,322) IHEAD
WRITE(3,323) LINE
GO TO, 99

470 WRITE(3,320) LPG
99 DO 500 I=1,KIK

SUM=0.
ISUM=0
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DO 499 K=1,NCYCL
C CALCULATE VALUES

CALL HDICE (NDK,NOWDC,NSIDE,N)
C NDK IS ACTUAL NUMBER OF DECAYS IN THIS INTERVAL

C NOWDC IS NUMBER OF DICE LEFT AFTER THIS DECAY
NOWDC=NOWDCNDK
NOTDK=NOTDC*FACT
SUM=SUM&NOTDK
ISUM=ISUM&NDK

499 NOTDC=NOTDCNOTDK

C THEDC IS THEORETICAL NUMBER OF DICE LEFT AFTER THIS DECAY

THEDC(II)=NOTDC
IDK (II) =ISUM
KDICE(II)=NOWDC

C THEDK IS THEORETICAL NUMBER OF DECAYS IN THIS INTERVAL
THEDK (II) =SUM

C CHECK TO SEE IF ALL DICE HAVE DECAYED
IF ( NOWDC) 200,200,500

500 CONTINUE
GO TO 220

200 ITST=IODEV(I)
C IF ODD NUMBER OF INTERVALS CALCULATED, GENERATE ANOTHER SET

C IF EVEN NUMBER OF INTERVALS CALCULATED, CONTINUE
GO TO (201e202),ITST

201 III=I&2
IDK(III)=0
KDICE (III) =0
THEDK(III)=THEDC(II)*FACT
THEDC(III)=THEDC(KK)THEDK(II)
I=II

202 IT=I/2
ISW=2
GO TO 551

220 IT=I/2
C WRITE COLUMN HEADERS
551 WRITE(3,900)

WRITE(3,901)
WRITE(3,902)
WRITE(3,910)
DO 300 I=1,IT
IO=I&IT
J=(I+KK)*NCYCL
JJ=(I0+KK)*NCYCL
WRITE(3,310) KDICE(I),THEDC(I),KDICE(I0),THEDC(I0)
WRITE (3,315) J,IDK(I &1), THEDK (I &1),JJ,IDK(IO &1),THEDK(IO &1)

300 CONTINUE
KK=KIK&KK

C IF NUMBER OF INTERVALS IS LESS THAN 200, CONTINUE
IF (200 LPG*NCYCL*40) 698,698,699

698 ISW=2
699 GO TO (700,1000),ISW
C REINITIALIZE VALUES
700 THEDC(1)=THEDC(KIK)
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KDICE(1)=KDICE(KIK)
LPG=LPG&1
GO TO 470

310 FORMAT("T12,15,T34,178.2,T60,1II,T71,I5,T94,F8.2)
315 FORMAT("I3,T22,15,T46,F8.2,T60,1II,T65,13,T83,I5,T105,F8.2)
320 FORMAT('1',T110,1PAGE1I4)
321 FORMAT(10',120A1)
322 FORMAT(101,T40,40A2)
323 FORMAT(101,120A1)
324 FORMAT(40A2)
450 FORMA(' THERE ARE ORIGINALLY1I51 DICE, EACH HAVING'15' SIDES'/)

460 FORMAT(' N='I5,' PRINT FOR EVERY '15' THROWS'/ /)

862 FORMAT(' INVALID DATA COMBINATION. NSIDE IS GREATER THAN 1000.',
X"4I5)

863 FORMAT(111 40A2/)
900 FORMAT('0INTERVAL'IT13,'ACTUAL'IT24,1ACTUAL',T37,'THEOR.',T49,

XITHEOR.',T60,III,T63,'INTERVAL'IT73,'ACTUAL'T84,1ACTUAL'IT97,ITHEO
XR.IT109,ITHEOR.1)

901 FORMAT('T14,1DICEI,T25,IDICEPT37,'DICE'T 49,IDICE',T60,'I'IT74,
X'DICEI,T85,'DICE'T97,'DICE',T109,'DICE')

902 FORMAT("T14,ILEFT'IT25,1DECAY',T37,'LEFTI,T49,1DECAY1,T60,111,
XT74,'LEFT'IT85,'DECAY',T97,'LEFT'IT109,'DECAY')

910 FORMAT(' T60,'I')
CALL EXIT
END

FUNCTION FCTLN(N)
DIMENSION FLG(100)
IF(N-100) 5,300,300

5 IF(ABS(FLG(3)-0.693) - 0.1) 100,100,10
10 FLG(1) = 0.0

FLG(2) = 0.0
DO 20 I = 3,100
Q = I-1

20 FLG(I) = FLG(I-1) & ALOG(Q)
100 FCTLN = FLG(N+1)

RETURN
300 FCTLN = 0.5*ALOG(2.0*N*3.14159) + FLOAT(N)*ALOG(N/2.718282) +

X 0.5/(12.0*N - 1.0)
RETURN
END
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SUBROUTINE IDICE(ISUM,NDICEINSIDE,N)
DIMENSION
DO 1000 I=1,NSIDE

1000 ISUM(I)=0
DO 30 I=1,NDICE
CALL DICE (NSIDE,IUP,N)
ISUM(IUP) = ISUM(IUP) &1

30 CONTINUE
RETURN
END

SUBROUTINE HDICE(ISUM,NDICE,NSIDE,N)
ISUM=0
CALL DICE(NSIDE,NUP,N)
DO 100 I=1,NDICE
CALL DICE (NSIDE,IUP,N)
IF (IUP -NUP) 100,110,100

110 ISUM=ISUM&1
100 CONTINUE

RETURN
END



BALLISTICS

Jeffrey Jalbert

Denison University
Granville, Ohio



INTRODUCTION

This computer-based exercise for the study of motion as pre-
dicted by Newtonian mechanics was designed as a pilot program to
explore the logistics of incorporating the computer into an in-
troductory-level course, to test student reactions, and to devel-
op a library of appropriate instructional programs.

Due to the experimental nature of the course, a group of 12
to 15 volunteers were solicited from a class of 60 students, with
the understanding that they would not receive direct credit for
their participation in the program. The available facilities,
viz., an IBM 1130 operated on a nontime-sharing basis, required
the division of this pilot group into four subgroups of three to
four students each. The necessity for this subdivision was borne
out in practice; it took each group a total of two to four hours
to finish working with one simulation program. This experience
has led us to give serious consideration to a campus-wide time-
shared system.

The students were familiarized with the operation of the com-
puter in an introductory lecture which dealt with the procedures
for entering programs, their operation and descriptions of the
various types of possible output, In addition, a number of game-
playing and picture-drawing programs were demonstrated to empha-
size the capabilities of the computer. It was evident from stu-
dent reaction that a handout sheet providing additional informa-
tion would have been most helpful at this point.

Once the students were familiar with the basic concepts of
computer operation, they began to participate in working sessions
which lasted from one to two hours (a half-hour proved too short).
Each session in which a new program was introduced was supplemen-
ted with a brief background lecture outlining the physics involved
in the program, describing the techniques used to integrate the
appropriate equations, and suggesting the relevance of this type
of problem to physics and the world in general. Once familiar
with the program, students were left completely on their own.

The pilot group represented a polyglot population, ranging
from freshmen who might later pursue physics, to senior chemistry,
pre-med and mathematics majors. Hence, the course emphasis was
directed toward such questions as "What is physics?", and "How do
physicists practice physics?", rather than toward calculus and
the mathematical derivations involved.

Beyond the demands of assembling a minimal program library,
providing write-ups, and determining the logistics of the course,
a fundamental challenge in designing a computer-assisted course
from scratch is the lack of available information from students,
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faculty, or other sources. Still, the course has been successful
and has generated quite a bit of student enthusiasm.

BALIS, the program presented here, is the first one encoun-
tered by the students and, of the programs developed for this
course, provides the most sophisticated output formats and in-
structional aids. Essentially, it presents a study of the motion
predicted by Newtonian mechanics in a situation which is beyond
the student's mathematical ability to analyze. Thus, he is led
to the conclusion that, by supplementing his mathematical capabil-
ities with a working knowledge of the computer, he can numerically
attack any real problem he might encounter and obtain an answer
which agrees with the results of an actual experiment.



STUDENT MANUAL

The program BALIS will enable you to explore the predictions
that mechanics makes about the motion of a projectile by providing
a reasonably accurate model of the physical conditions under which
the motion occurs. To do this, both the retarding force due to
air friction and the gravitational force should be included in the
study.

Thus, the forces on the projectile in our model are

a. its weight, straight down

w = mg

b. the frictional force due to the impedance of the air.
From general experience we know that this force is ac-
ting to slow the projectile down (i.e., it is opposite
to the direction of the velocity). Also, this force
increases proportionately with the speed of the pro-
jectile. (Stick your hand out the window of a moving
car to test this.) As a first approximation, for
speeds much less than the speed of sound, we will take
the magnitude of this force to be proportional to the
magnitude of the velocity F A, v. Thus, we have the
frictional force F ti - -14 , the minus sign indicating
that F is opposed to v. This may be stated in the
form of an equation:

= - kv

where k represents some kind of frictional constant
which depends on the nature of the medium and geometry
of the projectile.

The net force acting on the projectile in our model is now:

net =

The acceleration of the projectile can be found from

ma = net

or
a = - (k/m)v + g

= - av + g

For brevity we will call "m" the damping constant. Our model of
the motion is given by this last equation. it now remains for us
to "solve" this equation. That is, knowing the acceleration, find
the velocity and position as a function of time given suitable
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initial conditions.

This looks like a rather formidable equation to integrate

for the velocity. What does ; = afirdt actually mean with

v on both sides of the equation? Let's see how we might be able
to study the problem in another way.

First, re-state the vector equations as two separate compon-

ent equations:
ax = - avx

ay = avy-g

with the y-axis vertically upward, as usual.

Each of these equations may now be integrated separately.
The procedure is as follows: suppose that at time to the veloc-

ity components are vox and voy, and that the x and y posi-
tions are xo and yo. Now consider the time interval At just

after to. During this interval nothing is constant, but for a

short enough interval the accelerations are almost constant. Take

these accelerations to be those at the start of the time interval.

(I admit that this is an approximation!) Then, during the time

interval At, both the x and y velocities change by an amount

Avx and Avy where:
Avx = axLt

Avy = ay Ay

Remember that these are some sort of average changes in velocity

over the entire time interval. We will assume that the average

velocities over the entire time interval are

VX = vox + tsvx/2

Vy = voy + Avy/2

With these values for the average velocities, we are equipped

to determine the changes in x and y position during the time

interval
Ax = iixAt

Ay = VyAt

so that the new values for the positions and velocities at the end

of the time interval are

x = xo + Ax vx = VOX + Avx

Y = Yo + AY vy = Voy AVy

We can now repeat this process for another time interval At,

etc. This procedure can yield very good results when At is small;
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it is very poor with a large At. (Why?)

The computer will ask you for the necessary input data: the
initial velocity, the angle above the horizon eo = tan-1(voy/vox),
and the damping constant. In addition, the computer will request
a value for At. The above procedure is then implemented for sev-
eral successive intervals At until 0.1 sec has passed. At this
point, the results are stored and the computation continues until
another 0.1-sec interval passes and the results are stored again,
etc. It is possible to modify this 0.1-sec time interval for a
longer or shorter duration of the computer study of the motion, with
corresponding changes in the amount of computer time required. Sim-
ply turn switch zero on the console up and, when requested to do so,
enter your own time interval (TI). This value will remain fixed un-
til changed again by this procedure. You will find it necessary to
use this option for input velocities much larger than 10m/sec.

What You Might Investigate by Using BALIS

These are only suggestions, think up some of your own too!

1. What is the best angle to shoot at? (Does this depend
on the damping constant?)

2. What is the effect of changing the initial velocity?

3. What effect does damping have on your results?

4. What effect does the size of At have on the results?

5. Can you compare the results of the computer with ana-
lytic results for special cases?

One final comment: before you start, plan what you are going
to do. Don't start off by randomly punching numbers into the ma-
chine.



TEACHER'S GUIDE

As it stands, the program BALIS is a completely self-con-
tained package for studying the motion of a projectile under the
simultaneous action of gravitational and viscous forces. It is
semi-tutorial, in that it carries on a limited dialogue with the
operator, and also carries out calculations using parameters ob-
tained in that dialogue.

There are two basic parts to the package. The mainline
program carries out the dialogue, requests data and performs the
model calculations as specified in the Student Manual. These
calculations are based on the data obtained during the dialogue.
The mainline also handles the standard tabular output printing,
i.e., the parameters that were used in the calculation and the
detailed numerical results if this option is specified by the
console entry switches.

The second part is a subroutine, PLOT2, that handles the
graphical display. Originally this was an IBM supplied package,
but it has been modified so as to be more compatible with the
present usage. Normally, the graphs that are produced by
this subroutine will be scaled to fill an entire page (120 col-
umns), and to occupy a varying number of lines (maximum of 100),
depending upon how much input data is given. Either the verti-
cal (Y-Scale) or horizontal (X-Scale), or both can be retained
from one calculation to the next by raising the appropriate
switches. For best results, a continuous tape should be used on
the line printer. This eliminates unsightly skipping right in
the middle of a graph.

It is quite easy to obtain vast amounts of output from this
program. With a choice of the two output methods available, it
is felt that for most purposes the graphical display is suffi-
cient. If necessary, a given calculation can be repeated to ob-
tain the numerical tabulation.

The option of retaining either or both the X-Scale and Y-
Scale factors constant from one calculation to the next allows
you to visually compare one trajectory to another that has dif-
ferent parameters for the model. The impact of this kind of
comparison can be quite substantial. If this procedure would
lead to an error in the plotting (graph goes off scale), the
computer will so report and then return to the main program and
continue just as if the graph had been produced.

For those students who are interested,÷you÷can show them
how to integrate the model formula a = - av + g analytically.
(See, e.g., Symon's Mechanics). The results are
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x = (vox/a ) (1_e-at)

y = ((g/a2)+(voy/a))(1-e- at) - (gt/a)

Calculations using these formulae can be compared with the numer-
ical tabulations that can be obtained from BALIS. (The program
uses g = 10m /sect for simplicity.) Alternatively, one could
check out various levels of approximation to these formulae.

The most frequent questions that students ask include: "What

is the damping constant a?"; "What value does it have?". These
students might be referred to a discussion of Stoke's law for the
resistance to a sphere moving through a fluid, where they can get
order-of-magnitude estimates that could be reasonable in a real
atmosphere.

The programming language used to write these programs is

FORTRAN IV as adapted for the IBM 1130 computer. Most of the
statements are just standard FORTRAN and should not have to be
modified for use on any other machine. There are, however, some
things that may have to be changed. The first is the method of
interrogating the console entry switches. This is done in 1130
FORTRAN by the statement CALL DATSW(I,J). This statement causes
console switch I to be interrogated. If this switch is on, J is
set to 1. If the switch is off, J is set to 2.

The second problem is logical device specification. This is
handled in read and write commands by inserting (I,J) just after

read or write. I specifies the logical unit and J specifies the
format statement number. The logical number for the line printer
is specified in the first statement of the subroutines "MX = 5"
and may be changed there. In all other cases the use of "1" in
the listing implies the console typewriter and "5" the line print-
er in 1130 FORTRAN.

A third problem that may arise is the method used by the plot

subroutine. The characters that will be used are a blank (no
mark) rftneated to obtain appropriate distance along the line and
a star for the point. The integer equivalent of these for the
1130 is 16448 and 23616, respectively. If your machine uses a
different literal code than that which is used in the statements
IBLNK= and IANG= (on cards 30 and 31, respectively) these state-
ments should appropriately modified.

The flow charts on the following pages illustrate the opera-
tion of BALIS in some detail. The numbers on the flow charts in-
dicate the card numbers at which various processes begin. A sample
of the output is also shown.
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Flow Chart for Subroutine PLOT2(A,N,M,NL) of BALIS

26

IntarriTnx

30

ISET LITERALS

COMPUTE, X

SCALE FACTOR,
XMAX

45

GET YMIN, YMAX,
COMPUTE

Y-SCALE
FACTOR

60

WRITE
yes_ ORDINATE

SCALE

Argument List:

A - An array containing
values of the inde-
pendent variable in
column 2.

N - Number of rows of A.

M - Number of columns of
A.

NL - Number of lines to
be used in display.
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FlOW Chart for BALIS, Mainline Program
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AT TOO
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Enough
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ING, ACCEPT IT
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SO STORED

YET?

no

REQUEST INITIAL
SPEED, AZIMUTH
ANGLE, ACCEPT 4

from TYPEWRITER

PLOT? CALL PLOT2

WRITE THE
PARAMETERS

193

PRINT
MESSAGE Print

Stored Data
?

yes WRITE TITLES

AND TABLE

252

CONTINUE
?

CALL EXIT
=0111.
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// JOB 1
// FOR 2

*ONE WORD INTEGERS 3

*LIST SOURCE PROGRAM 4
SUBROUTINE PLOT2(A,N,M,NL) 5

C 6
C 7
C SUBROUTINE TO PLOT
C 9

C 10
DIMENSION OUT(101),YPR(11),A(1) 11
MX=5 12

1 FORMAT(////////,46X,' ',/,46X,'.',25X, 13
1'',/,46X,'. GRAPH OF TRAJECTORY .',/,46X,' ALTITUDE VS RA14
2NGE .',/,46X,'.',25X,'.',/,46X,' ', 15

3/1) 16
2 FORMAT(1X,F11.0,5X,101A1) 17
3 FORMAT(11X,1H.) 18
7 FORMAT( 16X,101H. 19
1 . .) 20
8 FORMAT(//,9X,11F10.1) 21
NLL=NL 22

C 23
C PRINT TITLE 24
C 25

WRITE(MX,1) 26
C 27
C SET PRINT LIT'S 28
C 29

IBLNK=16448 30

IANG=23616 31
LN=NLL/2 32

C 33
C FIND SCALE FOR BASE VARIABLE CHECK TO SEE IF IT IS TO BE CHANGED 34
C 35

CALL DATSW(4,J) 36

GO TO(21,20),J 37
20 XSCAL= (A (LN) -A (1) ) /FLOAT (NLL) 38

XMAX=A(LN) 39
C 40

C FIND SCALE FOR CROSS-VARIABLES CHECK TO SEE IF TO BE CHANGED 41
C 42

21 CALL DATSW(5,J) 43
GO TO(41,25),J 44

25 M1=N+1 45
M2=M*N 46
YMIN=A(M1) 47
YMAX=YMIN 48

DO 40 J=M1,M2 49

IF(A(J)-YMIN) 28,26,26 50

26 IF(A(J)-YMAX) 40,40,30 51
28 YMIN=A(J) 52

GO TO 40 53
30 YMAX=A(J) 54
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40 CONTINUE 55
YSCAL=(YMAX-YMIN)/100.0 56

C 57
C FIND BASE VARIABLE PRINT POSITION 58
C 59

41 XB=A(1) 60
L=1 61
YX = M-1 62
I=1 63

45 F=FLOAT(I -1) 64
XPR=XB+F*XSCAL 65
IF(A(L)-XPR)46,50,70 66

46 IF(A(L+1) -XPR -.1)47,47,50 67
47 L=L+1 68

IF(L-LN)46,50,50 69
C 70
C FIND CROSS-VARIABLES 71
C 72

50 IF(A(L)-XMAX)51,51,52 73
52 WRITE(1,53) 74
53 FORMAT(1X-SCALE IS TOO SMALL FOR PRESENT DATA') 75

GO TO 88 76
51 DO 55 IX=1,101 77
55 OUT(IX)=IBLNK 78

DO 60 J=1,MYX 79
LL=L+J*N 80
JP=((A(LL) -YMIN)/YSCAL)+1.0 81
IF(A(LL)-YMAX) 56,56,57 82

57 WRITE(1,58) 83
58 FORMATCY -SCALE IS TOO SMALL FOR PRESENT DATA') 84

GO TO 88 85
56 OUT (JP) =IANG 86
60 CONTINUE 87

C 88
C PRINT LINE AND CLEAR, OR SKIP 89
C 90

WRITE(MX,2)XPR,(OUT(IZ),IZ=1,101) 91
L=L+1 92
GO TO 80 93

70 WRITE(MX,3) 94
80 I=I+1 95

IF (L -111)45,84,86 96
84 XPR=A(LN) 97

GO TO 50 98
C 99
C PRINT CROSS-VARIABLES NUMBERS 100
C 101

86 WRITE(MX,7) 102
YPR(1)=YMIN 103
DO 90 KN=1,9 104

90 YPR(KN+1)=YPR(KN)+YSCAL*10.0 105
YPR(11)=YMAX 106
WRITE(MX,8)(YPR(IP),IP=1,11) 107
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C 108
C PRINT TITLE 109
C 110

WRITE(5,87) 111
87 FORMAT(//58X,'ALTITUDE') 112
88 RETURN 113

END 114

// DUP 115

*STORE WS UA PLOT2 116

// FOR 117
*NAME BALIS 118
*IOCS (CARD,TYPEWRITER, KEYBOARD, 1403PRINTER) 119
*LIST SOURCE PROGRAM 120
*ONE WORD INTEGERS 121
C 122

C 123
C PROGRAM TO STUDY THE MOTION OF A PROJECTILE UNDER 124

C SIMULTANEOUS ACTION OF GRAVITATIONAL AND VISCOUS FORCES 125

C 126

C 127
DIMENSION SAV(50,3) 128
TI=.1 129

C 130

C INTERACTION SECTION 131

C 132
WRITE(1,40) 133

40 FORMAT('DO YOU WISH A DISCUSSION OF THIS PROGRAM SWITCH 15 UP = Y134
1ES, PUSH START') 135

PAUSE 136

CALL DATSW(15,J)
GO TO(41,1),J

41 WRITE(1,28)
28 FORMAT('THIS PROGRAM ALLOWS YOU TO STUDY THE MOTION OF A

1 PARTICLE (E.G. A BULLET) AS PREDICTED BY NEWTONS' /'LAWS
2. TO MAKE THE SITUATION MORE REALISTIC PROVISION IS MADE

137
138
139

BALLISTIC140
OF MOTION141
TO INCLUD142

3E A RETARDING FORCE PROPORTIONAL' /'TO THE VELOCITY (PROPORTIONATEL143
4Y CONSTANT = K). YOU WILL BE ABLE TO CHANGE THE PARAMETERS (INITIA144
5L CONDITIONS,') 145

WRITE(1,29 146
29 FORMAT ('RETARDING FORCE) THAT ENTER INTO THE THEORY AND SEE THE E147

1FFECTS THAT THESE HAVE ON THE PREDICTED MOTION. THE' /'FUNCTION OF 148
2THE COMPUTER IS TO RELIEVE YOU OF THE TEDIUM INVOLVED IN PERFORMIN149
3G THE CALCULATIONS. IT MUST HAVE' /'ALL OF THE DATA THAT YOU YOURSE150
4LF WOULD NEED TO DO THE SAME CALCULATION. IT WILL REQUEST THESE AS151
5 NECESSARY.') 152

WRITE(1,30) 153
30 FORMAT( /'CONVENTIONS USED ARE'/,5X,11. MKS UNITS'/,5X,'2. TIME STE154
1P = INTERVAL OVER WHICH ACCELERATION ASSUMED CONSTANT'/,5X,'3. DAM155
2PING CONSTANT = K/MASS'/,5X,'4. AZIMUTH ANGLE = ANGLE ABOVE HORIZO156
3N'/,5X,'5. EARTH IS FLAT') 157

WRITE(1,31) 158

31 FORMAT('IN ADDITION YOU MAY SET THE CONSOLE SWITCHES TO MODIFY THE159
1 FLOW OF THE PROGRAM. THE FOLLOWING RESULTS ARE OBTAINED...') 160

WRITE(1,24) 161
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24 FORMAT(5X,'SWITCH 2 ON TO GRAPH'/, 162
15X,'SWITCH 3 ON FOR PRINTOUT'/, 163
25X,'SWITCH 4 ON TO RETAIN PREVIOUS x- SCALE' /, 164
35X,'SWITCH 5 ON TO RETAIN PREVIOUS Y-SCALE' /) 165
WRITE(1,36 166

36 FORMAT('SWITCHES 4 AND 5 MUST BE OFF ON THE FIRST PASS.'//) 167
1 DO 10 1=1,50 168
SAV(I,1)=0. 169

10 SAV(I,2)=0. 170
CALL DATSW(0,I) 171
GO TO(14,15),I 172

14 WRITE(1,16) 173
16 FORMAT('ENTER TI, MASTER') 174

READ(6,5)TI 175
15 WRITE(1,2) 176
2 FORMAT('ENTER TIME STEP AS A 5 PLACE NUMBER') 177
READ(6,5)DELT 178
IF(DELT-0.1)37,37,39 179

39 WRITE(1,38) 180
38 FORMAT('YOUR TIME STEP IS TOO LARGE, WE WILL TRY AGAIN') 181

GO TO 15 182
37 WRITE(1,3) 183
3 FORMAT('ENTER DAMPING CONSTANT (5 PLACES)') 184
READ(6,5)DAMC 185

34 WRITE(1,4) 186
4 FORMAT( 'ENTER INITIAL SPEED AND AZIMUTH ANGLE (IN DEGREES), PLEAS187
1E USE 5 PLACES FOR EACH') 188

5 FORMAT(2F5.3) 189
READ(6,5)SPD,THETA 190
IF(THETA-0.0000)35,32,35 191

32 WRITE(1,33) 192
33 FORMAT('YOUR ANGLE IS 0. THE PARTICLE HIT THE GROUND IMMEDIATELY A193
1FTER FIRING. TRY AGAIN.') 194
GO TO 34 195

35 CONTINUE 196
C 197
C SET INITIAL CONDITIONS 198

199
VXI=SPD*COS(THETA/57.3) 200
VYI=SPD*SIN(THETA/57.3) 201
VX=VXI 202
VY=VYI 203
T=0. 204
TP=0. 205
I=0 206
X=0. 207
Y=0. 208

C 209
C BEGIN ACTUAL CALCULATIONS 210
C 211

6 I=I+1 212
SAV(I,1)=X 213
SAV(I12)=Y 214
SAV(I,3)=TP 215
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TP=TP+TI 216
IF(150)7,27,27 217

7 T=T+DELT 218
DELVY=(DAMC*VY4.10.) *DELT 219
DELVX=DAMC*VX*DELT 220
X=X+ (VX+DELVX/2 . ) *DELT 221
Y=Y4(VY+DELVY/2.)*DELT 222
IF(Y+.1)27,27,71 223

71 VX=VX+DELVX 224
VY=VY+DELVY 225
IF(TTP)7,6,6 226

C 227
C GENERAL HOUSEKEEPING 228
C 229

27 CALL DATSW(2,J) 230
GO TO(8,23),J 231

8 CALL PLOT2(SAV,50,2,2*I) 232
WRITE(5,20)DAMC,SPD,THETA 233

20 FORMAT(///' INITIAL CONDITIONS' /' DAMPING CONSTANT = ',F5.3,2X, 234
1' INITIAL SPEED = IfF6.1,2X,IAZIMUTH ANGLE = I,F5.1,1 DEGREES') 235

23 CALL DATSW(3,J) 236
GO TO(25,26),J 237

25 WRITE(5,21) 238
21 FORMAT(///' TABLE OF HORIZONTAL AND VERTICAL' /' DISPLACEMENTS AS 239

1A FUNCTION OF TIME') 240
WRITE(5,17) 241

17 FORMAT ( //' TIME1,14X,IX1,12X/IYI) 242

DO 19 J=1/I 243
19 WRITE( 5,18)SAV(J,3),SAV(J,1),SAV(J,2) 244
18 FORMAT(1HO,F5.2,8X1f(.313X,F9.3) 245
26 WRITE11,9) 246
9 FORMAT('SWITCH ONE ON TO EXIT') 247
PAUSE 248
CALL DATSW(1,I) 249

GO TO(11,1),I 250

11 CALL EXIT 251
END 252



INITIAL CONDITIONS
DAMPING CONSTANT = 0.000 INITIAL SPEED = 3000.0 AZIMUTH ANGLE = 45.0 DEGREES

TABLE OF HORIZONTAL AND VERTICAL
DISPLACEMENTS AS A FUNCTION OF TIME

TIME X

0.00 0.000 0.000

0.10 233.358 227.281

0.20 445.502 423.401

0.30 657.646 609.520

0.39 869.790 785.639

0.49 1081.933 951.758

0.59 1294.077 1107.877

0.69 1506.220 1253.996

0.79 1718.364 1390.114

0.89 1930.508 1516.233

0.99 2142.651 1632.352

1.09 2354.795 1738.470

1.19 2566.938 1834.589

1.29 2779.082 1920.708

1.39 2991.226 1996.826

1.49 3203.369 2062.945

1.59 3415.513 2119.062

1.69 3627.656 2165.179

1.79 3839.800 2201.296

1.89 4051.943 2227.414



1.99 4264.083 2243.531

2.09 4476.222 2249.648

2.19 4688.361 2245.765

2.29 4900.500 2231.882

2.39 5112.638 2208.000

2.49 5324.777 2174.117

2.59 5536.916 2130.234

2.69 5749.054 2076.351

2.79 5961.193 2012.469

2.89 6173.332 1938.588

2.99 6385.470 1854.706

3.09 6597.609 1760.825

3.19 6809.748 1656.944

3.29 7021.886 1543.062

3.39 7234.025 1419.181

3.49 7446.164 1285.300

3.59 7658.302 1141.418

3.69 7870.441 987.537

3.79 8082.580 823.656

3.89 8294.714 649.775

3.99 8506.843 465.894

4.09 8718.972 272.014

4.19 8931.101 68.133

L
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INTRODUCTION

One often hears of the desirability of "open-ended" problems
in the classroom and laboratory; problems in which the student
begins with a relatively simple situation (for example, a falling
body) and then proceeds to add further refinements and nuances.
Thus, he gradually expands his understanding until he is coming
to grips with problems of general significance, convincing real-
ism and wide application. The computer promises to be the tool
par excellence for attaining this goal and "opening the other end"
to the appreciation of physicists and their students.

As an example of this educational use of the computer, we
have chosen to treat the problem of a ballistic projectile moving
through a resistive fluid. Thus, this paper may be considered a
natural extension of the ballistic problem presented in the low-
velocity limit by Jalbert.* Although intended for a more sophis-
ticated audience, such as a class in advanced undergraduate me-
chanics would afford, this material should be accessible to stu-
dents with some elementary computing experience and an understan-
ding of the concepts of differential equations, integrals and the
meaning of Newton's second law, F = Ma. A student capable of
integrating the second law of motion in its differential form for
a projectile in a vacuum should be capable of understanding the
following material, although the details will require some study.
As for the numerical techniques involved--i.e., the Trapezoidal
Rule and the improved Euler method--these can be readily appreci-
ated by anyone with an understanding of the geometrical signifi-
cance of an integral, i.e., the fundamental theorem of calculus.

After first discussing the nature of fluid friction and the
significance of the Reynolds number and drag coefficient, we then
consider three cases in order of increasing complexity: (1) hor-
izontal motion over a frictionless surface, (2) vertical motion
in the atmosphere, and (3) the reentry problem as an example of
two-dimensional motion in the atmosphere. In the horizontal case,
the problem is fairly straightforward, and it can be solved ana-
lytically for the case of constant drag. However, it does serve
as a useful vehicle for introducing the drag as a tabulated func-
tion, derived from experimental data, and evaluated by means of a
"table look-up" in the course of the numerical integration of the
equation of motion. It is shown that the realistic drag model
causes the motion to stop (at t = m) in a much shorter distance
than it would have if one had assumed either Stokes drag (low-
velocity) or Newtonian drag (high-velocity). This somewhat sur-
prising result affords some useful insights into the nature of
the high- and low-velocity resistive forces.

*"Ballistics," Jeffrey Jalbert, in Computer-Based Physics:
An Anthology, R. Blum, et al, published by the Commission on Col-
lege Physics (1969).
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The vertical case introduces gravity and a varying density
into the equations of motion, precluding any simple analytic solu-
tion even in the case of constant drag. At this point we have cast
loose from conventional physics instruction and must rely on the
computer. Furthermore, it also becomes E.!cessary to replace the
second-order equation of motion by two first-order equations of mo-
tion, treating the velocity as a separate variable. This technique,
of great value in the theory of differential equations as well as
in numerical analysis, is a precursor of the Hamiltonian formula-
tion of mechanics.

The reentry problem is the two-dimensional synthesis of the
preceding cases. However, although it represents a significant
increase of our capacity to handle real problems, it does not pre-
sent a corresponding increase in difficulty over the preceding two
cases. Although, for a time-dependent solution, we should require
four first-order equations, if time is eliminated by the use of

altitude y as the independent variable, then the horizontal
range, x, need not be computed simultaneously with the velocity
components vx = u(y) and vy = v(y). Hence, the resulting sys-
tem of equations represents no more difficulty than the time-depen-
dent solution of the vertical case. This is, in fact, the essence
of open-endedness: by a gradual process to make one's way to
higher and higher levels of analytic power and realism without
correspondingly increasing the complexity of the conceptual base.

It should be noted that none of these programs has yet been
offered to a physics class. We have instead availed ourselves of
editorial license to include these untried programs in this work.
Hence, it is not possible to make any definitive recommendations
concerning classroom usage. However, it might be suggested that
the general theory and the ho-cizontal case would be suitable for a
single lecture, given a prior understanding of the basic mechanics
involved. This could then be followed up by a homework-and-labor-
atory assignment to program and compute the vertical case, the
reentry problem, or both. It is recognized that the entire unit
represents a rather stiff dose of open-endedness; one may find
that only the better students would be genuinely stimulated to go
on to the reentry problem. Complete programs will be found in the
Teacher's Guide at the end of this paper. They are written in
BASIC, reflecting our view that time-shared systems are most ap-
propriate to the physics classroom.



STUDENT MANUAL

General Theory

In your work thus far you have studied the motion of a freely
falling point mass, which illustrated the kinemattc relations
between acceleration, velocity and displacement. The next step,
to analyze the two-dimensional motion of a ballistic projectile
(neglecting frictional effects), began with Newton's second law of
motion, F = Ma. By applying the concept of a vector to the dynam-
ics of such a particle one can derive its time-dependent behavior
under a constant gravitational acceleration, g, and show that it
is quadratic and linear in time in its vertical (y) and horizontal
(x) coordinates, respectively. The result is a trajectory which
is parabolic, of the form

where

y = Ym + a(x-xm)2

Xm = Xo + UoVoig

Ym = Yo vi/2g

a = -g/214

the zero-subscripted quantities (o) referring to initial values of
displacement and velocity, v = ui +

However, terrestrial projectiles do not move in a vacuum, they
move through the air, hence there is frictional resistance to their
motion. The exact nature of this resistance is quite complicated,
and varies according to the speed of the projectile and the proper-
ties of the fluid (gas or liquid) through which it flows--the at-
mosphere in this case. Osborne Reynolds (1842-1912) showed that a
dimensionless parameter, the Reynolds number, NR, could be defined
which characterizes the flow of fluid around a body moving through
it, and hence also determines the resistance which the body encoun-
ters as it forces its way through the fluid. The Reynolds number
is defined as pVL

NR (3)

where p and n are the density and the viscosity coefficient of
the fluid, V is the flow speed relative to the particular solid
body exposed to the fluid and LITaIength "characteristic" of
that solid body. For flow past a sphere, L is the diameter 2R
of the sphere. In the following analysis, we shall assume our pro-
jectile to be spherical.

For an object moving with velocity v through a stationary

fluid, the relative flow speed is V = Ivi. Experiment and theory
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show that the resistive force can be conveniently expressed by

DNit
f = -67111Rv(

C2
)

4
(4)

where CD is a dimensionless parameter that can be evaluated ex-
perimentally and is called the drag coefficient. Although CD is
a function of various variables, mainly the Reynolds number NR,
it varies only slowly over a fairly large range of values of NR >
100. Hence it is often useful to select a constant average value
of the drag coefficient CD and, as you can easily show with the
help of Eq. (3), to convert Eq. (4) to the form known as Newton's
resistance law:

f = -1 /2CDpVAv (5)

where A is the cross-sectional area of the sphere, irR2.

You have probably already studied the effect of Stokes'-law
resistance on projectile motion, in which f = -kv, where k -1-1 a
constant.* George Stokes (1819-1903) showed in 1845 that

f = -67mRir (6)

for a sphere moving so slowly that the flow of fluid around the
sphere is smooth (laminar) and nonturbulent. In this case the
parametric equations of a projectile trajectory take the form
(a = k/M):

110X =
a
(1-e-at) + xo (7)

y = (g/a2 + v0 /a)(1-e-at) - gt/a + Yo

Problem 1. Show that in the limit a 4 0 Eqs. (7) reduce to the
usual equations of projectile motion in a vacuum. (Hint: expand
e-at in the first few terms of a Taylor's series.)

If CD = CD(NR), then at low speeds Eq. (4) must reduce to
Stokes' law; i.e.,

lira CD = 24/NR
NR÷ 0

(8)

whereas at high speeds and large NR, CD = constant, approximately.
Figure 1 illustrates the actual dependence of CD(NR) for a sphere.
The curve varies depending upon the shape and orientation of the
projectile (determining CD(NR) for various configurations is a ma-
jor problem in aerodynamics); the sudden dip in the curve at N =
200,000 indicates the critical Reynolds number, where the onset of
turbulent flow is manifested by a sudden drop in the drag coeffi-
cient. For large Reynolds numbers we will simply assume

CD = 0.5 for 1,000 NR (9)

*Jalbert, Jeffrey, op. cit.
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Problem 2. Show that CD = 0.5 combined with Eq. (5) implies that
the resistive force on the sphere can be thought of as due to an

average gain of speed of V/4 parallel to the projectile's path

by fluid particles contained within the volume through which the

projectile travels. (Hint: first show that pVA grams of fluid

per second are "swept out" by the projectile, then find the aver-

age rate of change of momentum of this fluid.)

Although we find the equations of projectile motion to be sol-

uble in the limit of Stokes' resistance (Eggs. (7)), the nonlinear

form of Newton's resistance, Eq. (5), makes life much more diffi-

cult. Furthermore, for a Reynolds number NR = 10,000, for example,

the Newtonian resistance (CDNR/24 = 200) is approximately 200 times

greater than that which would be predicted by Stokes' law. To deal

with the projectile problem most generally, one must, therefore,

resort to numerical computations, continually computing new values

of CD from a table as the speed of the projectile changes. An-

other significant factor, when the fluid is the atmosphere, is the

marked change in density with altitude. In the following pages, we

shall illustrate the nature of this problem and its numerical solu-

tions by considering three cases: (1) horizontal motion on a fric-

tionless surface, (2) vertical motion through the atmosphere, and

(3) the motion (two-dimensional) of a reentry body as it returns to

Earth from space.

Numerical Integration and Quadrature

The numerical technique we shall use to integrate the equations

of motion is the improved Euler method, a second-order method in

which errors are proportional to (At)3, At being the integration -

step. This method is a member of a class of higher-order techniques

for integration known as Runge-Kutta methods. A fourth-order Runge -

Kutta method* enjoys very widespread use, and is to be found in the

program library of every well-equipped computing center.

Consider a curve x(t) such that

dx/dt = f(t,x)

Given some value xn = x(tn) we could find

f
tn+1

xn+1 = xn + f (t, x) dt

to

(10)

if we had some way of evaluating the integral without having prior

knowledge of x(t). We do this by computing the approximate aver-

age slope f over the interval and setting

xn+1 = xn + FAt

*Vierling, Anton F., "Harmonic Motion," op. cit.
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where At = tn+1 - tn.

The obvious way to do this is to set

f = 14[f(tn,xn) + f(tn+1,xfl+1)] (12)

However, xn+1 is what we are trying to determine; we cannot toler-

ate its presence on both sides of Eq. (11), and if f(t,x) were

simple enough to allow us to solve Eqs. (11) and (12) simultaneous-

ly for xn.4.1 we should probably not have had to resort to numri-
cal methods in the first place. Therefore, we must find some way

to approximate xn+1 on the right-hand side of Eq. (12). This we

do by means of a first-order prediction

xn+1 = X = xn + f(tn,xn)At (13)

which we then use to find

f(tn+1,xn+1) = f(tn+1.X)

xn+1 = xn + 14At[f(tn,xn) + f(tn+1,X)] (14)

This process may be pictured graphically (see Figure 2) as

follows: draw the tangent to the curve through (tn,xn) with slope

f(tn,xn). This line, 1-1, determines X, the first-order approxima-

tion in Eq. (13). Now, if we pass a line T2 with slope f(tn+1,X)

through this point it should be very nearly parallel to the actual

tangent to the curve f(tn+1,x(tn+1)); hence, the average slope

over the interval is approximately f = [f(tn,xn) + f(tn+1,X)]/2

as indicated in Eq. (14), and illustrated by the dashed line, T3.

The line t parallel to T3 represents the average tangent drawn

through (tn,xn) which then determines xn4.1 according to Eq. (14).

Simple quadrature, where f = f(t) f(t,x) is easily per-

formed by the Trapezoidal Rule obtained directly from Eqs. (11) and

(12), without the need of any intermediate step:

tF N-1 tn+1 N-1

xN-xo = f f(t)dt = I f f(t)dt = 1/At [f(tn)+fltn+1)] (15)

t0 n=0 tn n=0

where NAt = tFto, tn = to+nAt.

Problem 3. Show that this approximation is equivalent to approxi-

mating the curve f(t) by a line segment over each interval At,

then finding the area under the polygon.

Horizontal Motion

Let us first examine the case of purely horizontal motion

through the atmosphere with constant drag, for which an analytic

solution to Newtonian resistance fs quite simple. If dx/dt = 11,0,

then the equation of motion is
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tn+i

Figure 2. Second-order improved Euler method. The
average slope over the interval is that of lines T3 and T.

d2x/dt2 = du/dt = -(cpAp/2M)u2

which has the solution

u = uo[(CDAp/2M)upt + 1]-1

Integrating dx /dt = u then yields

x = 244-(2M/CDAp) ln[(CDAp/2M)upt + 1]

(16)

(17)

(18)

Comparing this solution for a Newtonian resistance to the Stokes'
law solution, Eqs. (7), we note that in both cases the velocity
gradually declines to zero; however, for large t Eq. (17) shows
that u 2M/CDApt independently of the initial speed! Further-
more, although Stokes' law resistance ultimately brings the body
to rest at x. = xp + up/a, the Newtonian solution gives x. =
Both of these effects are due to the fact that the Newtonian resis-
tance goes as u2, very quickly cancelling the effect of a large
initial velocity. Solving Eq. (11) for

t = (2M/CDAp)[1/u-l/up] (19)

shows that the time required to attain some speed u«up is prac-
tically independent of up for u small enough. Furthermore, at
low speeds the resistance rapidly decreases so that the body will
not stop in a finite distance.
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A realistic solution requires constant testing of the speed

so that when NR becomes less than 1,000, CD is evaluated from

some suitable function of NR or from a table of values combined

with an interpolation scheme. In air at one atmosphere pressure

and about 15°C, p = 1.2 kgm/m', n = 1.8x10-5n-sec/m2, so a pro-

jectile of diameter 10cm will have CD = 0.5 initially, if

Lpuo/n > 1,000 or u0 > uc = 1,000n/Lp = 15cm/sec

This approximation breaks down at a critical time (Eq. (19))

Tc = (2M/CDAO[1/uc-1/uo]

when we must begin to account for changes in CD(NR).

(20)

To see the effect that a variable drag coefficient has on the

motion of a sphere let us perform a numerical integration of Eq.

(16) and compare the results to the solutions of Eqs. (17) and (18).

In performing numerical computations it is a good idea to "scale"

the variables, :i.e., to transform them to dimensionless quantities.

This not only simplifies the programming and saves computing time,

but can also afford insight into the physical quantities of inter-

est. Expressing velocity in units of u0 and time in units of T =

2M/pAu0, Eq. (16) becomes

du/dt = -CD (u)u2 = f(u) (21)

with initial conditions t = 0, u = 1. The computation of x from

dx/dt = u is quite straightforward once u(t) is known, using the

Trapezoidal Rule. In the above system of units, displacement x

will be given in units of L0 = u0T = 2M/pA. The basic algorithm

is therefore

U = un-CD (un)uliAt ; un-1-1 = un-IWID(un)u/i + CD (U) U2 ] At (22)

Figure 3 is the flow chart for the integration of Eq. (22); arrows

indicate "assignment" statements--e.g., t f t + At means recall

the value stored in the cell in the computer's memory which is ad-

dressed by the name "t", add At to it and store the new value in

cell "t" in place of the old value of time.

The hexagonal box in the flow chart defining the function f =

-CD u2 represents a separate "subprogram" for the evaluation of f

(Figure 4); whenever f appears in the main program, the computer

branches to this subprogram, evaluates f from the current value

Of u, and returns this value to the appropriate place in the main

program. In this case, f(u) is defined over three different re-

gions:
(1) 1,000 < NR < 10,000, CD = 0.5

(2) 0 < NR 1, CD = 24/NR
(3) 1 < NR < 1,000, CD is found by

linear interpolation on the table
of logarithms given on page 178,

in fair agreement with Figure 1.
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INPUT of INITIAL DATA,
XO INTEGRATION-STEP, FINAL TIME,

PRINT - PARAMETERS

READ
(10), C(10)

INPUT of TABLE of---__ B = LOG (NR), C = LOG (CD)
FOR 1 SNR .S1,000

C-D, f -CD ..u2 .ESUBPROGRAM FOR f(u)

IMPROVED

EULER111

METHOD 11n+

TRAPEZOIDAL]
RULE

P + mAt

WRITE
t, u, x, NR

U = un + fAt

t t + At

At
= un+-2-(f(un)+f(U))

At
xn+1 = xn+ 2(un+un+1

YES

Figure 3. Integration of du/dt = -CD(u)u2
by the improved Euler method.
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TABLE LOOK-UP

J
_

LOG(NR) LOG(CD)

1
2

.
.
.

10

B1
B2
.
.
.
B10 1

C1
C2

.
.
C10

( RETURN

Figure 4. Subprogram for evaluation
of resistive force term, f = -CDU2.

SEARCH

FOR FIRST
Bj > LOG(NR)
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NR logeNR CD logeCD

1 0.00000 24.0 3.17805
2 0.69315 15.0 2.70805
5 1.60944 7.0 1.94591
10 2.30259 4.1 1.41099
20 2.99573 2.4 0.87547
50 3.91202 1.4 0.33647
100 4.60517 1.0 0.00000
200 5.29832 0.73 -0.31471
500 6.21461 0.57 -0.56212
1000 6.90776 0.50 -0.69315

Table 1. CD(NR) for 1 < NR < 1,000.

The inclusion of the print parameters m and P is to avoid
printing out the results at every integration-step, but only at
"print-times" P occuring every m-th step at intervals of mot.
This is purely for reasons of economy.

If the motion begins in the Newtonian regime, we can predict
from Eq. (20) the time it takes before the transition to the Stokes
regime begins; in dimensionless units,

Tc PAuo 2M Lp
tc T -2171- CDAp

[
1,000n up

]

tc [
1 N

C
=

E0
1 000

1] (23)

As a sample computation, for NRO = 10,000 the improved Euler
method algorithm, using integration-steps of At = 0.1, agrees with
Eq. (11), the analytic solution, to within a maximum error of 0.03%
over the range 0.0 .S tc < 18.0, 10,000 NR 1,000, so that we
need not be concerned about the accuracy of the method in this case;
especially since, for smaller NR, the accelerations are much smal-
ler.

Continuing the computation into the Stokes regime shows the
effect of the realistic increases in drag coefficient in slowing up
the body, so that it comes to rest at approximately x. = x0+9.73LoT
which is the area Under the computed curve of Figure 5. As the graph
indicates, percent differences in the computed and theoretical val-
ues of u are relatively unimportant until u has become quite
small. To appreciate the importance of the realistic model, con-
sider the difference in the predictions of x,. A Newtonian model
predicts x. = co, while a Stokes-law prediction yields

x. = xo + v0 /a = xo + Mv0/61TnR = xo + (NR0/12)(M/PITR2)

or, in this case,
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= x0 + 833 (M/pA) (Stokes) (24)

which is considerably greater than the numerical solution

= xo + 19.5(M/pA) (computed) (25)

Note that M/pA = L0 /2 is the length of a cylinder swept out by
M which contains a mass of fluid equal to M. The reason that
both limiting solutions give ranges greatly in excess of the com-
puted range is because (1) at low velocities the Newtonian drag
becomes tco small to stop the object, and (2) at large velocities
NR » 1 Stokes' law gives a drag which is too small.

Problem 4. If p' is the density of the spher5cal object show that
its stopping distance is proportional to the ratio p'/p and to
its radius.

Problem 5. Construct the program for Figures 3 and 4 and compute
x(1,000) for NRO = 10,000 (dimensionless variables, of course).

Problem 6. Show that in the limit of Stokes' law, u ti eat where
a = 24/NRO = 24x10-4.

Problem 7. How would you go about changing the integration-step in
the middle of a computation?

Vertical Motion

Next we shall consider a less tractable case, that of vertical
motion through the atmosphere. If we take y = altitude, positive-
ly increasing upward, then the equation of motion is

d2y/dt2 = dv/dt = -g-(CDAp/2M)Vv (26)

It is similar in content to Eq. (16), but complicated by the appear-
ance of gravitational acceleration, -g, and the fact that p = p(y).
For most problems of practical interest the variation in altitude
is small compared to the Earth's radius, hence we will take g to

be constant, g = 9.8m/sec2.

Problem 8. If a twelve-pound iron cannonball is traveling at 30
miles per hour at sea level, compute the ratio (2Mg)/(0v2CDA).

To construct the algorithm for integrating second-order equa-
tions of the form

d2y/dt2 = f(t,y,dy/dt)

we must consider v = dy/dt as a separate function and solve two
simultaneous first order equations:

dy/dt = v ; dv/dt = f(t,y,v) (27)

which we integrate numerically "in parallel"; computing the first-



order predictions

Y = yn + vnAt ;

and the average slopes

v = (vn + V)/2 ; I = [f(tn,yn,vn) + f(tn+1,Y,V)]/2

and, iinally,

184

V = vn f(trifYniVn)lit (28)

(29)

Yn+I = yn + irAt ; vn+1 = vn + let (30)

Before integrating, it will simplify matters to scale the
variables as we did in the horizontal case, setting

vo, T = 2MipsAvo and voT = Lo = 2MipsA

as the units of speed, time and space, respectively, where, for
convenience, we take ps = atmospheric density at sea level. Then
the scaled equation of motion becomes

dv /dt = -G-CD (P/Ps)Vv ; G = gT/vo (31)

Note that, since a particle may reverse its direction due to grav-
ity, hence the sign of v may change, it becomes necessary to
introduce the speed V = Iv! into the equation of motion, so that
the resistive force is always opposed to the motion. This should
be compared with Eq. (21).

Problem 9. Write Eq. (21) for a particle initially traveling to
TEdIEFE:

In constructing the algorithm we will need a new subroutine
for the evaluation of p. In physics the "barometric equation,"
or the "law of atmospheres" is almost a commonplace. It states
that for an ideal gas in which pressure and density are related by
P = pRT, where R is a constant and T is the absolute tempera-
ture, the change in pressure with altitude of a column of gas is
given by dP = -pgdy, just due to the weight of the gas in a slice
of thickness dy. Substituting and integrating yields the barome-
tric equation

where H is

Problem 10.
level, using
pressure.

P = Pse-Ylk ; P = PseY/H (32)

known as the scale height.

Derive Eq. (32) and evaluate the scale height at sea
the density given in Table 2 and one atmosphere of

Although this approximation is useful over Ay .s H, it is not
precisely correct since the temperature and composition, hence the
scale height, vary with altitude as well, although much more slowly
than p. Therefore, we shall compute p by linear interpolation
on its logarithm as given in Table 2 (see page 182). At higher
altitudes the atmosphere is so tenuous that its resistance may be
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i

y (km) logio p (p in kgm/M )

0 .0882
10 .6226-1
20 .9491-2
30 .2653
40 .6097-3
50 .0098
60 .4832-4
70 .9465-5
80 .2874
90 .4937-6

100 .6794-7
110 .9723-8

Table 2

ignored. If in doubt about a particular case, try some order-of-
magnitude estimates to satisfy yourself that this is true; if more
data is needed it can be found in the Cospar International Refer-
ence Atmosphere (CIRA), 1961, North-Holland Publishing Company,
Amsterdam (1961).

The flow chart is shown in Figure 6; it is a modification of
Figure 3 to include a subprogram for evaluating p prior to eval-
uation of CD since NR depends on p. We shall assume the vis-
cosity of the atmosphere to be constant, since it depends on the
square root of the absolute temperature which varies by about 35%
from 0 to 110km. The other assumption implicit in this model is
that the radius of the object is much less than the scale height
so we can be sure that the CD(NR) dependence of Figure 1 holds.

Problem 11. Write a subprogram for the evaluation of the normal-
ized density, p/ps.

An ionosonde is a device launched into the ionosphere (y =
50-500km) to measure atmospheric properties, especially free elec-
tron densities and temperatures which strongly affect radio trans-
missions. Imagine an ionosonde in the form of a sphere one meter
in diameter, mass 10kgm, launched from a rocket which maintains a
steady acceleration of 3g during its powered vertical ascent. The
power can be cut off by a signal from ground control, and sphere
and booster caused to separate gently by means of air jets. Thus,
we can consider the sphere separately after burn-out. The problem
is this: if we wish to send the sphere to an altitude of exactly
100km, at what altitude do we shut off the rocket engines?

Let's begin by assuming that the rocket has reached some al-
titude yo and speed v0 at burn-out. ,The standard kinematic
formula for unifGrm acceleration gives va = 2(3g)y0, so that in a
vacuum the ionosonde could ascend to altitude h
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READ
B(10) ,C(10)
Z(12),W(12)

v0 =
L0 = 2MipsA
T = L0 /v0
G = gT /v0

p,v

INPUT of TABLES
.......- B = LOG(NR), C = LCG(CD)

Z = ALTITUDE, W = LOGio(P)

COMPUTATION

..... of
SCALE-FACTORS

SUBPROGRAM

for
DENSITY, p (y)

) SUBPROGRAM

-G-CDVvp / ps for

Nit CD ACCELERATION, f(v)

= Yn + vnAt

V = vn + f(vn)At

ft + t + At

IMPROVED

EUI ER

METHOD

Figure 6. integration of
dv/dt = -G-CD(P/Ps)Vv

by the improved Euler method.
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h = yo 4/2g = 4y0

before dropping back to Earth. For h = 100km, then yo = 25km,
but due to frictional resistance, we would expect to have to burn
fuel somewhat longer if we are to reach the desired altitude.
Nonetheless, a first guess for yo = 25km will do to start our
computation. Note that at this altitude p = 0.04kgm/m3, and the
Reynolds number is approximately 2.7x106. Hence, the weight-to-
drag ratio is psG/p = Mg/(14CDApvi) = 0.01 at a minimum, imply-
ing that the resistive force will have some significant effect in
determining yo.

The following table gives the results of a typical trial-and-
error computation:

Yo h

25,000 28,600
30,000 38,070
40,000 82,290
42,000 98,150
42,200 99,700
42,260 100,130

Table 3. Maximum altitude, h, of ionosonde as a function
of burn-out altitude, yo, in meters. P = 0.5m, M = 10kgm.

Improved Euler method, t = 25 units. Lo = 2M/psA = 20.7 meters.

This represents a significant increase in our original prediction
of 25,000 meters. To see the effect of increasing the mass without
changing the cross-section of the sphere, we assume M = 10kgm, and
repeat the computation. The result is the following:

......--

Yo
0h

25,000 54,640
30,000 87,840
31,500 97,460
31,900 100,010

Table 4. Maximum altitude, h,
function of burn-out altitude, Yo,

M = 100kgm. At = 10. Lo

of ionosonde as a
in meters. R = 0.5m,
= 207 meters.

Since your major fuel expense will probably depend mainly on the
mass of the rocket and its burn-out altitude, whereas the pay-off
depends on the amount of data you can collect, it is clearly ad-
vantageous to cram as much instrumentation as possible into a
sphere of given size.

Problem 12. Compute burn-out altitude in the above example for
some representative values of Lo between 1 and 1,000; sketch a
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graph of yo(4).

Problem 13. Solve Eq. (31) for kinetic energy w = v2/2 per unit
mass of ascending body, as a function of altitude, w = w(y). As-
sume p = p(y) is any function of y.

Planar Motion: The Reentry Problem

We will close this discussion with the reentry problem, an
example of a two-dimensional trajectory in a plane. In this case
the equations of motion are a combination of Eqs. (5), (16) and
(26). If we set f = -1.CDApV(ui + vj) , V = 112+v2 then the equa-
tions of motion are

d2x/dt2 = -(CDAD/2M)Vdx/dt (33)

d2y/dt2 = -g-(CDA9/2M)Vdv/dt (34)

Since the resistive term is a function of y, u = dx/dt and v =
dy/dt, we can omit discussion of x(t) until after we have solved
the problem for u,v, and y. Thus, we have to solve the three re-
lated dimensionless equations (using the same scale factors as in
the vertical case):

du/dt = -CD(p/ps)Vu (35)

dy/dt = v (36)

dv/dt = -G-CD(p/ps)Vv (37)

These equations are based on the assumption of a flat Earth; this
is not unreasonable as long as the horizontal range of the trajec-
tory is much less than the Earth's radius, Re = 6,400km. A com-
pleted calculation should be tested for consistency to see if its
horizontal range does meet this condition.

In "reentry" a rocket or satellite returns to the Earth's at-
mosphere from space or from Earth-orbit. Its altitude (assuming
no lift from the atmosphere) is a monotonic decreasing function of
time, and we may further simplify our statement of the problem by
replacing time with altitude as the independent variable. Thus,
we eliminate Eq. (36) and obtain

du/dt = (dy/dt) (du/dy) = vdu/dy ; dv/dt = vdv/dy

and upon substitution into Eqs. (35) and (37) we obtain

du/dy = -CD(p/ps)Vu/v ; dv/dy = -G/v-CD (P/Ps)V (38)

giving two independent first-order differential equations which
can be integrated via computer with no more difficulty than the
vertical case. We only need to (1) replace variable y by u and
t by y, (2) change the output of the second subroutine from



-CD(p/ps)V2 to -CD (P/Ps)V,
uation of the slopes du/dy
for impact, y < 0.

Problem 14. Do it.
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(3) alter the two equations for eval-
and dv/dy, and (4) include a test

Problem 15. Formulate the equations of motion and initial condi-
tions in polar coordinates for a round Earth.

As an example, assume that reentry begins at y = 100km, mo-
tion of the reentry body being little affected by the rarefied
atmosphere above that altitude. A body returning to the Earth's
gravitational field from infinity would, in a vacuum, acquire a
speed of

Vi/2 = gRe (39)

so we shall select Vo = 2gRe 1 10km/sec as a representative
value. The second initial condition will be the assumption that
the reentry angle 80 = 30°. In calculations of this kind, itlis
customary to set up differential equations for V and 8 =taii(-v/u)
as indicated in Figure 7; however, we leave this as a problem.

Problem 16. TransformEqs. (38) into equations in V = /1712TIT2 and
tan° = -v/u.

To compute the range we can apply the Trapezoidal Rule to the
computation of range

R =
0 Yo

f vdt = f (v/u) dy = j cote dy
0 Yo 0

similar to the way in which x(t) was computed
horizontal case. The tangent angle e is also
to compute, and it gives a vivid measure of the
parture from linearity.

(40)

in Figure 3, the
a useful quantity
trajectory's de-

The trajectory predicted by Eqs. (38) is the knee-shaped
curve shown in Figure 7, the "knee" occurring in the region of
maximum rate of change of 0, where friction has slowed the object
sufficiently that gravity can pull it appreciably off course. The
actual dimensions of the trajectory depends on L0 ti M/A, and if
this ratio is large enough, the reentry body may hit the ground
before reaching the knee.

In our example the flow is initially Newtonian, since at 100km

NRO = P vL/n = (10-6794-7)( 104)L/(2x10-5) 250L = 1,000

if we take L = 4m, a reasonable size. The results of the computa-
tions for a "ballistic coefficient" f3 = Mg/CDA = 5,000n/m , a fair-
ly typical figure, are shown in Table 5. (This quantity is often
known as the "weight-to-drag ratio" although it is not dimension-
less.)
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Figure 7. Reentry coordinates;
flat Earth approximation.
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y (km) x (km) V (m/sec) 0 ( °)

100.0 0.0 10,000.0 30.0
90.3 16.8 10,009.2 30.1
80.6 33.5 10,017.0 30.2
70.9 50.1 10,018.3 30.3
61.2 66.7 9,996.7 30.4
51.5 83.3 9,905.0 30.5
41.8 99-.7 9,569.0 30.6
32.1 116.1 8,304.7 30.7
22.4 132.4 4,435.4 30.9

(continuing with an integration-step, Ay = -2180, m = 4)

19.3 137.6 2,696.9 31.1
16.2 142.7 1 229.7 32.0
13,0 14743 407.2 38.1
9.9 150.0 172.8 63.0
6.8 150.9 131.9 83.3
3.7 151.1 110.4 89.0
0.6 151.1 92.6 89.9

Table 5. Reentry trajectory for V0 = 10km/sec, Oo = 30°
at 100,000 m, ballistic coefficient Mg/CDA = 5,000n/m2,

L0 = 388.2 meters. Integration-step: Ay = 5L0,
print-step m = 5.

Problem 17. How would you add a computation of t = t(y) to the
program used to generate the results of Table 5 above?



General Remarks

TEACHER'S GUIDE

The material contained in the Student Manual represents an
attempt to inject a certein amount of realism and vitality into a
topic which is ordinarily treated in a stodgy and often incorrect
manner in the texts, when it is treated at all. And yet its rel-
evance in the Age of Speed will be quite apparent to the students.
The concepts and techniques exhibited here can be applied to any
motion through a fluid, which, with the exception of very slow
motion or space travel, includes all cases of practical interest.

The progression from fairly simple notions to the more com-
plex through a succession of higher-level problems is, hopefully,
measured enough to be acceptable to junior- and senior-level me-
chanics students, and perhaps even to students of elementary phys-
ics who have had a thorough grounding in fundamental calculus.
The material demands only an understanding of the meaning of first
and second derivatives, integrals and the content of a differen-
tial equation. The rest is done by the computer. Some elementary
experience with computers and their language and programming is a
prerequisite, since this material is aimed explicitly at a more
sophisticated student audience than the elementary level normally
affords.

Those concepts which are to be swallowed whole as an act of
faith are (1) the significance of the Reynolds number, (2) Stokes'
law, and (3) the experimental data for CD(NR) contained in Figure
1. If the student understands the meaning of an integral and a
differential equation he should experience no difficulty in under-
standing the Trapezoidal Rule or the improved Euler method, al-
though programming them may present some subtle difficulties, and
the need for careful bookkeeping cannot be overestimated. If the
second-order method causes severe difficulty, the student should
be recommended to a first-order method which is the basis of the
first approximation contained within the improved Euler method,
i.e., Ay = Ax(dy/dx). It would also be an illuminating exercise
to compare the accuracy (and the computation time) of the firs t-
and second-order methods.

Since the direction of the resistive force is opposed to the
velocity, v, some pains have been taken to specify the vector na-
ture of the problem (all vectors are underlined). Thus u and v
are the x- and y-components of the velocity, while V=Iv1=u2+ v2
represents the speed. Figure 1, giving CD(NR), was adapted from
page 100 in Prandtl's book (see the bibliography at the end of
this paper). One should point out that this approach (ignoring
lift) can be used for any shape of projectile, so long as we have
either a theory or data which gives CD as a function of speed
and the physical parameters of the problem. Students should easily
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see that the drag will depend, too, on the orientation or "angle
of attack" of the projectile with respect to the fluid flow (moving
coordinate system).

Numerical Integration and Quadrature

The improved Euler method discussed here is treated in detail
in the book by McCalla (see bibliography) as a special case of
Runge-Kutta methods; it is highly recommended for advanced students
interested in this subject. Although the use of this method is not
as general as that of the fourth-order, it affords a marked im-
provetent in accuracy over the first-order method. Its use is rec-
ommended even for crude hand computations with a large integration-
step as an easy way to obtain some idea of where a given differen-
tial equation is leading, before tackling it in earnest.

Figure 2 illustrates the relative accuracy of the first- and
second-order methods over a rather large interval At. Although we
have "derived" the Trapezoidal Rule as a special case of the im-
proved Euler method, the argument should actually go the other way,
as indicated by Eqs. (11) and (12). However, it could not be as-
sumed that this result was familiar to the students, and the present
approach was decided upon to emphasize the differential equations.

Horizontal Motion

It should be emphasized here that the analytic solution for
the Newtonian flow must be self-consistent; i.e., it holds only un-
til the Reynolds number drops below 1,000. The scaling of variables
in Eq. (21) is not strictly necessary, but makes for more elegant
statements as well as computational efficiency. If desired, values
can be "unscaled" before output.

Scaling is theoretically desirable, also, because it ties in
very naturally with notions of dimensional analysis and dynamic sim-
ilarity. It also focuses attention upon which physical parameters,
or combinations of them, are most important, and what physical mean-
ing is to be ascribed to them. Thus, the Reynolds number is actual-
ly the ratio of the fluid's inertial reaction to being moved, fi =
vdm/dt, to the viscous force transmitted to the fluid, fv = Andv/dr,
by the cylinder of area A = wR2 swept out by the moving spherical
object of radius R. The mass of fluid displaced per second is
dm/dt = pAv and dv/dr = v/2R. Hence

fi/fv = (pAv2) /(Anv/2R) = pvItin = NR (41)

It should be emphasized that this order-of-magnitude reasoning has
an important place in physics, especially in fluid dynamics, space
physics and astrophysics.

Note that the only physical input necessary for the scaled com-
putation is the initial Reynolds number, NR0 I needed to determine
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the drag coefficients. Thus, situations having the same initial
Reynolds number have the same dimensionless solution. However,
the fact that the units of length and time may yet differ brings
up the interesting possibility of "modeling." That is, if we
double the mass-to-area ratio M/A, without changing the Reynolds
number or initial speed, the units of length and time are both
doubled. Thus, we can observe the phenomenon twice as long over
twice the distance, and, after scaling the results to dimension-
less quantities, apply them to the original case. By means of
this sort of reasoning models are developed suitable for use in
the laboratory which yield information about the real problem,
which may be impossible to take indoors. In the simple example
above, one might ask what would happen if we doubled the-radius
of a solid sphere? The mass would go up by a factor of eight,
the Reynolds number would double and the units of length and time
would change by a factor of 8/3--a totally different physical
situation.

The following figure (Figure 8) gives a sample program writ-
ten in BASIC for the computation of the horizontal drag problem
illustrated in Figures 3 and 4. No particular attempt has been
made to economize; the program has been made purposely redundant
in some variables for the sake of clarity. For the same reason,
and as a check on errors, the entire integration is performed nu-
merically, although it would be more accurate to use the analytic
formula, Eq. (17), for NR > 1,000. Results are given in Table 6.

The program shown was written in elementary BASIC, in which
all arrays are numbered from zero; to run in EXTENDED BASIC it is
necessary to change 9 to 10 in statements 100, 180 and 190, and
LET J = 1 in statement 310. Due to conversion of decimal to bi
nary and the accumulation of round-off errors in P and T, it is
necessary to insure against erratic behavior of the printing algo-
rithm by setting P = T-.00001 in statement 400 and using final
time Ti greater than the last time to actually be printed out.

If it is desired to change the integration-step At in the
computation we change only the values of to, v0, and xo to
equal the last values computed before changing At. Print-para-
meters m and P may be changed if desired, but NRO must remain
constant; changing it is equivalent to a change in the physical
parameters of the problem.

In the case of Problem 5, one can show that u v e-24t/NRO
(t dimensionless) by quoting the solutions of Eq. (7) for which
u ti e-cat where

a = 67mR/M , T = 2M/pAu0 , aT = 24 /NRO

The dimensionless range is x(1,000) = 9.687.
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100 DIM B(9) ,C(9)
110 READ NO,T,U,D,T1,M,X
120 REM NO=INITIAL REYNOLDS NUMBER
130 REM T=INITIAL TIME
140 REM U=INITIAL SPEED, X=INITIAL POSITION
150 REM D=TIME-STEP
160 REM T1=FINAL TIME
170 REM M=TIME-STEPS PER PRINT
180 MAT READ B(9)
190 MAT READ C(9)
200 REM B=TABLE OF REYNOLDS NUMBERS, C=TABLE OF DRAG COEFFICIENTS
210 REM MORE ACCURATE TO DO LINEAR INTERPOLATION ON LOGARITHMS
220 GO TO 390
230 REM BEGIN TABLE LOOK-UP SUBPROGRAM
240 LET N=NO*U
250 IF N<1000 THEN 280
260 LET C1=0.5
270 GO TO 370
280 IF N>1 THEN 310
290 LET C1=24/N
300 GO TO 370
310 LET J=0
320 LET J=J+1
330 IF B(J)<LOG(N) THEN 320
340 LET R=(LOG(N)-B(J-1))/(B(J)-B(J-1))
350 LET C1=C(J-1)+R*(C(J)-C(J-1))
360 LET C1=EXP(C1)
370 LET F=-Cl*U*U
380 RETURN
390 GOSUB 240
400 LET P=T-.00001
410 PRINT " T ti X NR "

420 IF T<P THEN 460
436 LET P=P+M*D
440 PRINT T,U,X,N
460 LET UO=U
470 LET A=F
480 LET U=U+A*D
490 LET T=T+D
500 GOSUB 240
510 LET F=(A+F)/2
520 LET U=U0+F*D
530 LET X=X+.5*D*(UO+U)
540 GOSUB 240
550 IF T<T1 THEN 420
560 GO TO 610
570 DATA 10000,0,1,.1,10,l0,0
580 DATA 0,.6932,1.6094,2.3026,2.995713.912,4.6052,5.2983
590 DATA 6.2146,6.9078,3.1781$2.708111.9459,1.411,.8755
600 DATA .3365,0,-.3147,-05621,-.6932
610 END

Figure 8. BASIC program for horizontal
drag problem, NR0 m 10,000.
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T
0

U
1

X
0

NR
100001. .666859 .811306 6668.592. .500162 1.38693 5001.623. .400124 1.8334 4001.244. .333429 2.19817 3334.295. .28579 2.50657 2857.96. .25006 2.77371 2500.67. .222272 3.00933 2222.728. .200041 3.2201 2000.419. .181853 3.41077 1818.5310. .166696 3.58482 1666.96570 DATA 10000,10,166696y.2,20,10,3.58482

10. .166696 3.58482 1666.9612. .14288 3.89318 1428.814. .125018 4.16028 1250.1816. .111125 4.39588 1111.2518. .100012 4.60663 1000.1220. 9.08427 E-2 4.79722 908.427570 DATA 10000,20.,9.08427 E- 2,.5,101.,20,4.79722
20 9.08427 E-2 4.79722 908.42730 6.13391 E-2 5.54077 613.39140 4.55429 E-2 6.06819 455.42950 3.57083 E-2 6.47101 357.08360 2.90455 E-2 6.7928 290.45570 2.42748 E-2 7.05817 242.74880 2.07141 E-2 7.2823 207.14190 1.79506 E-2 7.47511 179.506100 1.57198 E-2 7.64308 157.198570 DATA 10000,100.,1.57198 E- 2,5,501,10,7.64308
100 1.57198 E-2 7.64308 157.198150 9.08233 E-3 8.24013 90.8233200 5.93534 E-3 8.60724 59.3534250 4.18058 E-3 8.85644 41.8058300 3.08142 E-3 9.03604 30.8142350 2.34995 E-3 9.17067 23.4995400 1.84038 E-3 9.27473 18.4038450 1.46314 E-3 9.35688 14.6314500 1.17652 E-3 9.42256 11.7652570 DATA 10000,500.11.17652 E-3,25,1501.,4.,9.42256500 1.17652 E-3 9.42256 11.7652600 7.84643 E-4 9.5191 7.84643700 5.41475 E-4 9.58455 5.41475800 3.83802 E-4 9.63031 3.83802900 2.77248 E-4 9.66305 2.772481000+ 2.03672 E-4 9.68689+ 2.036721100 1.52777 E-4 9.70456 1.527771200 1.17412 E-4 9.71797 1.174121300 9.19882 E-5 9.72838 .9198821400 7.23714 E-5 9.73657 .7237141500 5.69379 E-5 9.743 .569379

Table 6. Solution to horizontal drag problem.
Note changes of integration-step At, print-parameter m.
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In this case the acceleration is a function of the dependent
variable y, as well as the speed v; therefore, it becomes neces-
sary to consider v = dy/dt as a separate independent variable
related to y through a differential equation. Once the student
overcomes his prejudice against first derivatives as being somehow
inferior in status to the function itself (i.e., of lower degree),
this should prove a very agreeable notion. This strategem is not
only useful in numerical methods and the theory of differential
equations, but is a precursor of the Hamiltonian formulation of
mechanics which leads ultimately to quantum mechanics and the wave-
particle dualism.

The variation of density p = p(y) makes it necessary to in-
clude a second table look-up subroutine in the program. This sub-
routine must always be entered before evaluating CD (NR) and f(v),
since the result depends on the e-Tagay of the fluid. (See Figure
9.) Other questions which might be considered in connection with
this problem are the computation of work done against friction dur-
ing the powered phase of the ascent, the effects of diurnal fluc-
tuations in atmospheric density as given in the 1965 edition of the
COSPAR International Reference Atmosphere and the use of a rocket
with constant thrust rather than constant acceleration. (The speed
of a rocket with exhaust velocity V0 starting from rest in vacuum
is v = Voln(M/M0), M = mass of rocket.)

There is no reason why the subroutines for density and drag
should be separate; they were kept distinct for the sake of clarity
and ease of comparison with the preceding programs.

The solution to Problem 13 gives some idea of the complexity
of an analytic approach to this problem. Substituting w = v2/2
in Eq. (31), first setting V = ±v for the vertical ascent (v > 0)
or descent (v < 0) yields

dw/dy = v(dv/dy) = dv/dt = -GT2CD(P/Ps)w (42)

a first-order inhomogeneous equation in w which has the conven-
tional solution

,Y1
w = exP[Ti

i7

Q(V)dy'] lwo-f G exp[±J Q(y")dy"]) (43)

Yo Yo Yo

Q(Y) = 2CD (P/Ps) P = P (y)

if desired, one might also ask students whether or not dw/dy=0
at the maximum altitude of a vertical descent. The obvious tenden-
cy is to say "Of course, since the kinetic energy is a minimum
there." The catch, however, is that although w(y) has its minimum
value over the allowed range of y, it is not an extremum for y = h,
where dw/dy = -G. This point is obscured by the seeming complexity
of the physical situation and the fact that dw/dt = 0 for y = h,
since w(t) is an extremum when y(t) = h. However, one can point
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100 DIM B(9) ,C(9)
110 DIM Z(11) ,W(11)
120 REM Z=ALTITUDE IN TENS OF XMS; W=LOG (DENSITY) + 10.
130 READ VID, T1 ,M
140 REM NO=INITIAL REYNOLDS NUMBER
150 REM T=INITIAL TIM
160 REM V=INITIAL SPEED, Y8=REAL ALTITUDE IN METERS
170 REM Y= NORMALIZED INCREMENT OF ALTITUDE,, H=INITIAL ALTITUDE
180 REM D=TINE -STEP
190 REM T1=FINAL TIME
200 REM M=TIME-STEPS PER PRINT, H=INITIAL ALTITUDE (ACM)
210 LET H=40000
220 MAT READ B(9)
230 MAT READ C(9)
240 REM B=TABLE OF REYNOLDS NUMBERS, C=TABLE OF DRAG COEFFICIENTS
250 REM MORE ACCURATE TO DO LINEAR INTERPOLATION ON LOGARITHMS
260 MAT READ Z(11)
270 MAT READ W(11)
280 FOR I=N) TO 11
290 LET W(I)=W(I) -10.0882
300 LET Z(I)=10000*Z(I)
310 NEXT I
320 LET V9=SQR(6*9.8*H)
330 LET L9=80/(1.23*3.14159)
340 LET T9=L9/V9
350 LET G=9.8*T9/V9
360 LET P=T-.00001
365 GO TO 620
370 REM DENSITY, R8, AND DRAG, Cl, SUBPROGRAMS
380 LET Y8=H+L9*Y
390 LET I=1
400 LET I=I+1
410 IF I=11 THEN 430
420 IF Z(I)<Y8 THEN 400
430 LET S=(Y8-Z(I-1))/(Z(I)-Z(I-1))
440 LET R8=W(I-1.) +S* (W(I)-W(I-1))
450 LET R8=104R8
460 RETURN
470 LET N=Nl*R8*ABS(V)
480 IF N<1000 THEN 510
490 LET C1=0.5
500 GO TO 600
510 IF N>1 THEN 540
520 LET C1=24/N
530 GO TO 600
540 LET J=1
550 LET J=J+1
560 IF B(J)<LOG(N) THEN 550
570 LET R=(LOG(N).A.B(J-1))/B(47)-B(3-1))
580 LET C1=C(J-1)+R*(C(J)-C(7-1))
590 LET C1=EXP(C1)
600 LET F=-G-Cl*R8*V*ABS(V)
610 RETURN
(continued)
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620 GOSUB 380
630 LET N1=1.23*V9/1.8E-5
640 LET NO=R8*111
650 PRINT "UNITS: "0,9;"M/SEC, ";L9;" M, ";T9;" SEC "
660 PRINT
670 PRINT "T Y8 V
680 PRINT
690 GOSUB 470
700 IF T<P THEN 740
710 LET P=P+M*D
720 PRINT TrY8V,N
730 IF V<=0 THEN 960
740 LET YO=Y
750 LET VO=V
760 LET A=F
770 LET Y=Y+V*D
780 LET V=V+A*D
790 LET T=T+D
800 GOSUB 380
810 GOSUB 470
820 LET F=(A+F)/2
830 LET V=(VO+V)/2
840 LET Y=YO+V*D
850 LET V=VOI-P*D
860 GOSUB 380
870 IF T<T1 THEN 690
880 GO TO 960
890 DATA 0,0,1,25,20000,16
900 DATA 0,.6932,1.6094,2.3026,2.9957,3.912,4.6052,5.2983
910 DATA 6.2146,6.9078,3.1781,2.7081,1.9459,1.411,.8755
920 DATA .3365,0,-.3147,-.5621,-.6932
930 DATA 0,1,2,3,4,5,6,7,8,9,10,11
940 DATA 10.0882,9.6226,8.9491,8.2653,7.6097,7.0098,6.4832
950 DATA 5.9465,5.2874,4.4937,3.6794,2.9723
960 END

Figure 9. BASIC program for vertical drag problem,
Y0 = burn-out altitude, V0 = 6gy0l M = 10kgm,

diameter = 1 meter.
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UNITS:

T

1533.62 M/SEC,

Y8

20.7031 M, 1.34995E-2

V

SEC

NR
0 40000 1 343218.
400 46607.4 .67599 94496.2
800 51704.8 .567734 40394.4
1200 56122.6 .503109 20950.7
1600 60079.3 .454121 11702.2
2000 63662.8 .412142 6820.47
2400 66914.7 .37361 4136.75
2800 69855.6 .336861 2593,31
3200 72496.6 .301114 1558.94
3600 74844.3 .265937 964.145
4000 76902. .231046 612.97
4400 78671.4 .196308 398.158
4800 80153.6 .16166 260.594
5200 81349.1 .127071 164.634
5600 82258.3 9.25167E-2 101.515
6000 82881.4 .057986 56.7773
6400 83218.7 2.34708E-2 21.6078
6800 83270.2 -1.10354E-2 10.0643

Table 7. Sample output from program
of Figure 9, yo = 40km, At = 25,m = 16.

out that because the resistive term vanishes with the square of the
speed, the situation at turn-around, y = h, is no different from
that of a solution in vacuum where w = wo-Gy and dw/dy = -G, or,
in classical terms, I-1=2 = %nivl-ngy (with dimensions). They
might be asked to sketch their impression of the curve w(y) from 0
to h and back. The final kinetic energy on impact is wf < wo
due to resistive losses.

Planar Motion: The Reentry Problem

The program for the solution of this problem is readily adap-
ted from that of Figure 9, with only those changes which are indi -
cated in Figure 10. This computation differs from the vertical
case chiefly in that range x is also computed by the Trapezoidal
Rule (statement #870), the increment Ay is negative, and initial
conditions are given in terms of speed, V9 = Vo, and angle, T8 = 0.
Since V9 is a physical parameter of the motion, it is carefully
distinguished from the dimensionless speed, V8 = V/Vo to facilitate
program interruptions for changes in the integration-step. Similar-
ly, normalized input Y = (y-yo)/Lo is distinguished from initial
altitude H = yo.

IL a vacuum the trajectory of a ballistic projectile will be a
conic section with the Earth at one focus. If the Earth's center
is taken to be the origin of a nonrotating set of coordinates (see
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Figure 11), the problem remains two-dimensional and the equations
of motion are

d2r/dt2 - r(do/dt)2 + gRi/r2 - (gpAp/2M)Vdr/dt = 0 (44)

(1/r)[d(r2do/dt)/dt] + (CDAp/2M) Vr(dO/dt) = 0

V2 = (dr /dt) 2 + r2 (d + /dt) 2 ; tans = (dr/dt)/(rdO/dt)

which can be transformed to a single equation in sec20 = z(r):

d2z/dr2 + (fcsce - 2/r)dz/dr + (2/r - 2fcsce)(z/r) = 0

f = CDAP/M

130 READ Y,V8,T8,V9,D,M,X
150 REM H=INITIAL ALTITUDE, Y=INCREMENT IN ALTITUDE
160 REM U,V=X,Y VELOCITY COMPONENTS
170 REM D=ALTITUDE INCREMENT (NEGATIVE)
180 REM X=RANGE, ABSOLUTE, V8 =SPEED (SCALED), V9=ABS. SPEED.
190 REM T8=THETA, DIRECTION OF MOTION.
210 LET H=100000
320 LET U=V8*COS(T8/57.2958)
330 LET V=-V8*SIN(T8/57.2958)
335 LET L9=1500/(1.23*3.14159)
360 LET P=Y+.00001
640 LET NO=R8*N1 *V8
670 PRINT "Y V8 Y8 X T8
700 IF Y>P THEN 740
720 PRINT Y;V8;Y8;X;T8;NR
730 IF Y8<=0 THEN 960
745 LET UO=U
760 LET A1 =F *U /V
765 LET A2=F-G/V
770 LET U= U +A1 *D
775 LET V=V+A2*D
780 LET V8=SQR(U4-2+V+2)
790 LET Y=Y+D
820 LET Al=(A1 +F*U/V)/2
82FN LET A2=(A2+F-G/V)/2
83v LET U=U0+A1 *D
840 LET V=V0 +A2*D
860 LET V8= SQR(U *U +V *V)
870 LET X=X+(U/V+UO/V0)*D*L9/2
880 GOSUB 380

Figure 10. Alterations to vertical drag
program of Figure 9 for the case of
reentry, yo = 100km, V0 = 10km/sec,
eo = arctan(-v0 /u0) = 30°, radius,

R = 2m, Pi= 3,200kgm.
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Figure 11. The reentry problem in spherical
(round-earth) coordinates. The geocenter is at 0.
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To transform Eqs. (38) to the customary velocity coordinates
V and e we differentiate the expressions

V2 = u2 v2 ; tan() = -v/u (45)

with respect to y to obtain

V(dV/dy) = -CD (p /ps) V3 /v - G sec20(dO/dy) = G/uv (46)

and substituting for u = V cos° and v = -V sine yields, setting
w = %2V2, the equations

dw/dy = -G + [2q10(p/ps) cscelw (47)

de/dy = -(G/2w) cote (48)

Since Q(y) = 2C ;pips) csce the resemblance of Eqs. (47) and (43)
indicates that a closed implicit solution of the form w = wjy,e(y)]
and e = ejy,e(y)] can be obtained. The solution for w is given
by substitution for Q in Eq. (43), while the solution for e is

,Y
sec° = seceo expj-j (Gi2w)dy]

Yo

(49)

Barring special simplifying assumptions about p, it would be gild-
ing the lily to say that these "solutions" are hopelessly intracta-
ble.
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